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Final Report
Coherent Structures and Chaos Control in
High-Power Microwave and Charged-Particle Beam Devices
AFOSR Grant No. FA9550-06-1-0269

This report summarizes research results obtained under the auspiccs of Air Force
Office of Scientific Research, Grant No. F49620-06-1-0269 (Chen, 2006). In particular,
we conducted vigorous theoretical and computational investigations of coherent
structures and chaos in a wide range of intense electron beam plasmas relevant to the
development of high-power microwave and particle-beam devices for directed energy
applications.

The following 1s a brief summary of our research accomplishments in selected areas,
while detailed findings are described in the preprints cited in this report.

1. High-Power Magnetron Research (Zhou and Chen, 2007 and 2008; Davies, Zhou
and Chen, 2007; Davies, Chen and Zhou, 2008)

Under the auspices of the grant (Chen, 2006), we have developed a small-signal
theory of a non-relativistic magnetron using a planar model with a thin electron cloud
(Zhou and Chen, 2007 and 2008). The theory includes both inertial effects and
electromagnetic effects in a Floquet expansion. We have derived an analytical dispersion
rclation of such a planar magnetron, and calculated the growth rate analytically. We have
shown that the magnetron instability involves the resonance between the electron cloud
and the slow waves in the magnetron cavities. We have found good agreement between
the theory and the self-consistent two-dimensional (2D) particle-in-cell (PIC) MAGIC
simulations. We have predicted vortex structures in the equilibrium relativistic electron
flow in magnetrons (Davies, Zhou and Chen, 2007; Davies, Chen and Zhou, 2008). The
vortex structures are induced by the periodic corrugations on the magnetron anode. In the
analysis, we have made the guide-center approximation, which is validate at low electron
densities. We have validated the analysis using test-particle calculations.

1.1 Small-Signal Gain Theory of Non-Relativistic Planar Magnetrons (Zhou and
Chen, 2007 and 2008)

The onset of the unstable oscillations in magnetrons has not been analytically
described to complete satisfaction, although extensive particle-in-cell (PIC) simulations
can make good predictions for the instability characteristics (see, for example, Chan,
Chen and Davidson, 1993; Lemke, Genoni and Spencer, 1999). Previous analytical
studies included various models utilizing linear theories. Earlier work focused on the
diocotron instability in the guiding-center approximation (Davidson, Chan, Chen, et al.,
1991; Ayres, Chen, Stark, et al., 1992), which ignores inertial effects in the electron cloud.
The recent work by Riyopoulos on the basis of a guiding-center model provided new
insight into the magnetron instability in the low-space-charge limit (Riyopoulos, 1998). A
linear theory taking a single rf mode in the Floquet expansion was developed to include
electromagnetic effects (Kaup, 2001, 2004 and 2007). Despite these theoretical and PIC



simulation efforts, quantitative agreement between theory and PIC simulations has not
been reported until our paper (Zhou and Chen, 2007 and 2008).
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Figure 1.1.1 Schematic of a planar magnetron with a thin electron layer (from Zhou and
Chen, 2008).

Assuming a multi-stream thin electron cloud located at a distance of /4 from the
cathode as shown in Fig. 1.1.1, we have obtained the small-signal gain equation or the
loaded dispersion relation (Zhou and Chen, 2008)

Gl = 7§ ‘Sin(kqa/2)|2 cos(qu)+gkq(a))cos[pq(b—h)]
}L oL 2 b ka2 | Slpgb) e (@)snlp, 5]

Ed

0=D(w,k.)= cot[% (d-b)

(1.1.1)

1 2 .
&k, (a))= ﬁ Pq [e Tbj ]Sin(pqh) (1.1.2)

J=1 (“’ & qub/')z Sgith

and p, = ,}a)z/cz —k; . For £, = 0, Eq. (1.1.1) is the vacuum dispersion relation for the

corrugated structure. For £, # 0, on the other hand, Eq. (1.1.1) permits calculations of

where

small-signal gains in magnetrons, which will be discussed in Sec. 1.2.

It should be noted that the simplifying assumption of a thin electron cloud has
enabled us to avoid the difficulties in treating multiple poles in the small-signal gain
equation in general situation. We plan to further study the general small-signal gain
equation.

1.2 Comparison between Small-Signal Gain Theory and Two-Dimensional Particle-
in-Cell Simulations (Zhou and Chen, 2008)




To compare our small-signal gain theory with 2D MAGIC simulations, we havc
restricted to the low-current regime, where the thin-beam equilibrium model is a good
approximation to the thin eleetron eloud in the 2D MAGIC simulations.

As an example, we have considered a system with the parameters: L =0.478cm,
a=0382em, b=0.478em, d =4.25em, h=0.382em, B, =180G, E, =-5.27kV/em,

oy =2.12x 108cm™, and ¥, = 0.098c.

First, we have computed the vacuum dispersion relation from Eq. (1.1.1) with
&, =0, and found good agreement with the 2D MAGIC simulation with the absence of
q

the eleetron eloud, as shown in Fig. 1.2.1.

Second, we have made use of the self-consistent PIC ecode, 2D MAGIC, to simulate
the planar magnetron system. Because 2D MAGIC can handle only a few vancs, a 3-vane
slow-wave corrugated structure with the same parameters as in Fig. 1.2.1 is used in the

simulation. Periodie boundary eonditions are used such that the 27/3 mode is supported
by the 3-vane structure. The uniform crossed electrie and magnetie fields are applied with
B. =180G and E, =-5.27kV/em. The eleetron beam is initialized as a slab infinitc
long in the z direction and with a width of 0.05 em in the x direetion. The eleetron beam
propagates with an initial velocity of ¥, = 0.098¢ . As the beam propagates, the instability
starts to build up which is illustrated by the voltage cross the vane tip of the slow-wave
structure. In Fig. 1.2.2, the amplitude of the oscillating voltage filtered by a filter that
selects the 277/3 mode is plotted. In the early stage of the instability (e.g. for ¢ < 15 ns),
the oscillation has a very small amplitude and exhibits a relatively broad frequency
spectrum which is not shown in Fig. 1.2.2. Starting from ¢ = 10ns, the 27/3 mode grows
exponentially. It saturates at about 7 =26 ns. For this MAGIC simulation, the 27/3
mode is determined to have a frequency of 1.93 GHz and an amplitude growth ratc of
3.12 dB/em, shown as eirele and eross in Fig. 1.2.3, respeectively.

Finally, we have solved the loaded dispersion relation in Eq. (1.1.1) with &, #0to

calculate the real frequency and the instability growth rate. Due to the influence of the
anode corrugation, the electron cloud velocity prior to the linear growth is observed to
vary sinusoidally in the y— direetion with small amplitude around thc averaged flow
velocity in the 2D MAGIC simulation. To model the velocity variation, we have used
three electron cloud streams at the same location x = 0.0384 cm, each with one third of
the total surface charge number oy =0y =03 =0,/3 and a slightly different

velocities, i.e., V; =0.98V,, V3, =V}, and V3 =1.02V,, . The theoretical growth rate is
in good agreement with the 2D MAGIC simulation as shown in Fig. 1.2.3.

1.3 Vortex Structures in Relativistic Magnetrons (Davies, Zhou and Chen, 2007;
Davies, Chen and Zhou, 2008)

The periodic corrugations on the anode have a strong influence on the equilibrium
flow in magnetrons and erossed-field deviees. In particular, we predicted the existenee of
vortex structures induced by the corrugations on the anode in non-relativistic magnetrons
(Chen, 2004; Bhatt and Chen, 2003 and 2004; Davies and Chen, 2006). Until our




prediction, vortex formation had not been discussed in the literature in the context of
magnetrons and crossed field devices. In fact, all conventional treatments of the
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Figure 1.2.1 Vacuum dispersion diagram for a planar magnetron structurc obtained from

the dispersion relation in Eq. (1.1.1) with &, = 0 (solid curve) and 2D MAGIC

simulations (dotted curve). The dashed curve is the beam line f = k./27V, . Here, the
parameters are L = 0.478cm, a = 0.382cm, b =0.478cm, d =4.25cm, and V), = 0.098¢
(from Zhou and Chen, 2008).
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Figure 1.2.2 Plot of the amplitude of oscillating voltage as a function of time as obtained
from the MAGIC simulation. Here, the parameters are L = 0.478cm, a = 0.382 cin,



b=0478cm, d =4.25cm, h=0.382cm, B, =180G, £, =-5.27kV/cm,
oy =2.12x 10%cm?, and 7, = 0.098¢ (from Zhou and Chen, 2008).
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Figure 1.2.3 Plot of the temporal growth rate lm(a)) (solid curve) and the real frequency
Re(w) (dashed curve) as a function of wave number &, for the lowest resonant TM

mode. The solid and dashed curves are obtained from Eq. (1.1.1) using the three electron
cloud streams, whereas the circle and cross are the real frequency and instability grow

rate from the MAGIC simulation, respectively. Here, the parameters are L =0.478cm,
a=0382cm, b=0478cm, d =4.25cm, h=0.382cm, B, =180G, E, =-527kV/em.

Gy =G = =G =TT ATR]0 em?, ¥y, = 0.987, , V3, =V, =0.098¢, and
Vy3 = 1.02V,, (from Zhou and Chen, 2008).

cquilibrium electron flows in magnetrons had ignored effects of the anodc corrugations
(see, for example, Davidson, Chan, Chen, et al., 1991).

By definition, an equilibrium flow corresponds to a state in magnctrons and crossed-
field devices in the absence of rf oscillations. While it is an ideal situation in an actual
device, it is of critical importance in order for us to develop a better understanding of
magnetrons and crossed-field devices.

Since our report of vortex formation (Chen, 2004) at Magnetron/PIC Simulation
Workshop held at AFRL, May 2-3, 2004, several researchers at AFRL (Cartwright, 2007)
and elsewhere (Bosman, et al.,, 2005) have been exploring use of non-axisymmetric
cathodes to improve magnetron performance.

Under the auspices of the grant (Chen, 2006), we have established the theory of
vortex structures in equilibrium electron flows in relativistic magnetrons (Davies, Zhou
and Chen, 2007; Davies, Chen and Zhou, 2008), as a generalization of our earlier work
(Davies and Chen, 2006). The theory employs a planar geometry shown in Fig. 1.3.1 and
the guiding-center approximation which is valid when the electron plasma frequency is




small compared to the cyclotron frequency. Under the guiding-center approximation, the
(nonlinear) equihibrium equations are

V24(x,y)=4dren(x,y), (1.3.1)
y
Electron Vacuum “\

Layer Region A S

}
X=x,(y)

{ X
0 \|D

oB = B_(x,y), RSty

Figure 1.3.1 Electron flow under the influence of anode corrugations in a relativistic
planar magnetron. Here, the y axis is the cathode, the curve x = x,(y) is the electron

layer envelope, and the dashed curve is a representative anode (Davies, Zhou and Chen,
2007).

N T it o ) (1.3.2)
(68

Vix,y)= z (i y)é: < V(x,y), (1.3.3)

where —e is the electron charge, n(x,y) 1s the electron number density, V(x,y) 1s the
electron fluid velocity, and ¢(x,y) is the electric potential. The electric field E(x,y)is
given by E(x,y)=-Vg(x,y).

For a uniform electron layer, the solutions to the nonlinear equilibrium equations
(1.3.1)-(1.3.3) are

#(x. )

- <EX (O,y))x +2mex’ + i L (e"'"" —e™t )cos(t(,,y) (L

= n=1

V,+C,(x=D)+Voe™ P cos{iy)+ > 4, e (e“'"("m —e D) )COS(I\‘")’) (x, <x<x,)

n

o0
n=1

B2( )= { 87en,[p(x, )= glx, () y)l+ B)  (0<x<x,)

(1.3.4)
(1.3.5)

B(;z (xb < x<xa)




where the coefficients are given by analytical expressions. One important result is that the
solution given in Eqgs. (1.3.4) and (1.3.5) supports relativistic vortex structures, as shown
in Figs. 1.3.2 and 1.3.3. The other important result is that the constant magnetic field
contours coincide with the equipotential contours, as seen in Eq. (1.3.5) and Fig. 1.3.3.

As a numerical example, we have considered a system with the following parameters:

V,=512kV , V,=49.049kV , B,=20kG , (E/(0,y))=0 , x=27/L=rxcm"
(corresponding to L =2.0cm), and D =0.5cm. The geometry, magnetic field B,, and
potential ¥ of this example provide a rectangular approximation to a typical cylindrical

L-band relativistic magnetron (see, for example, Lemke, Genoni and Spencer, 1999).
Instead of directly specifying a value of n,, we have chosen w,/w, =1/3, wherc

o, =(4m,e’ /m)'? is the nonrelativistic plasma frequency in the electron layer, and
w, =eB,/mc is the nonrelativistic cyclotron frequency in the vacuum region. From the
values of B, and o, /o, specified above, it follows that n, = 4.3200 x 0™,

Computed contours of constant potential are shown in Fig. 1.3.2, The cathode at

potential ¢ =0 is represented by the line x=0. The equipotential contour at 512 kV

shown by a dashed curve corresponds to the corrugated conducting anode. The electron-
layer boundary is represented by the second dashed curve at 93 kV. The error of £1kV
in its potential of @(x, (y),y)=93kV is due to the neglect of higher order terms than the

first in the perturbation calculation.

Also shown in Fig. 1.3.3 are the test particle trajectories which follow the
equipotential contours. This is a numerical validation of our vortex theory in equilibrium
electron flows of relativistic magnetrons.
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Figure 1.3.2 Contours of constant potential as functions of x and y for a systcm with
parameters V, =512kV, V, =49.049kV, x=xcm”, (E (0,y))=0, B, =20kV,

D=0.5cm, and @, /o, =1/3. The corrugated anode and the electron-layer boundary




(also contours of constant potential) are depicted by the dashed curves at 93 kV and 512
kV, respectively (from Davies, Chen and Zhou, 2008).
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Figure 1.3.3 Detail of the electron-layer region for the system of Fig. 1.3.2. Contours of
constant potential are shown by the solid lines with the electron-layer boundary shown by
the dashed curve at 93 kV. Because these contours are also lines of constant magnetic
field, each contour 1s labeled with both a value of ¢ and of B_. Trajectories of test

particles, each launched from the point marked with an “x”, are shown by circles (from
Davies, Chen and Zhou, 2008).

Our discovery of vortex structures in magnetrons and crossed-field amplifiers
provides new insight into a number of areas in magnetron and CFA research, including

a) Elimination of ion trapping and ion noise,

b) Elimination of turbulence and noise,

c) lmprovement of magnetron efficiency (Cartwright, 2007), and

d) Suppression of mode competition (Bosman, et al, 2005).
We plan further investigate them.

2. Discovery of Adiabatic Thermal Beam Equilibrium in a Periodic Solenoidal
Magnetic Field (Samokhvalova, Zhou and Chen, 2006, 2007a and 2007b; Zhou,
Samokhvalova and Chen, 2006 and 2008; Samokhvalova, 2008)

Many HPM dcvices such as klystrons and TWTs employ a periodic solcnoidal (or
permanent) magnetic focusing field. Under the auspices of the present grant (Chen, 2006),
we have discovered the thermal equilibrium state of an electron beam as it undergoes
adiabatic expansion and compression processes in a periodic or axially varying solenoidal
magnetic ficld. In particular, we have developed paraxial kinetic and warm-fluid
equilibrium thcories for a thermal electron beam (Samokhvalova, Zhou and Chen, 2006,
2007a and 2007b; Zhou, Samokhvalova and Chen, 2006 and 2008). While our kinctic and
warm-fluid beam equilibrium theories are equivalent and applicable to for both the non-
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relativistic and relativistic regimes, to our warm-fluid equilibrium theory, our kinctic
beam equilibrium theory provides detailed information about the electron distribution in
phase space. We have found good agreement between our theories and the rccent
experimental measurements of the electron density profiles at University of Maryland
Electron Ring (UMER) (Bemal, Quinn, Reiser, et al., 2002; Zhou, Samokhvalova and
Chen, 2008). Our discovery of the adiabatic thermal beam equilibrium has filled a major
gap in the understanding of periodically focused beam equilibria.

2.1 Kinetic Beam Equilibrium Theory (Zhou, Samokhvalova and Chen, 2006 and
2008; Samokhvalova, 2008)

In our kinetic beam equilibrium theory (Zhou, Samokhvalova and Chen, 2006 and
2008; Samokhvalova, 2008), we have considered a thin, continuous, axisymmectric
( 0/06=0), single-species charged-particle beam, propagating with constant axial
velocity V.e_ through an applied periodic solenoidal magnetic focusing field. The applicd
periodic solenoidal focusing field inside the beam can be approximated by

Be"(r,s)=—%B;(s)ré,+Bz(.v)é:, (2.0.15

where s =z is thc axial coordinate, r = \/x* + y* is the radial distance from the beam
axis, the prime denotes the derivative with respect to s, and B,(s) is the axial magnetic
field which can be either periodic along the z — axis with periodicity length § or an
arbitrary function of s . In the paraxial approximation, r,, << S is assumed, where 7,
is the rms beam envelope. The transverse kinetic energy of the beam is assumed to bc
, and the Budker parameter

small compared with its axial kinetic energy, i.e., |V:| >> |Vl

of the beam is assumed to be small, i.e., ¢°N, /mc* <<y, B, where g and m are the
particle charge and rest mass, respectively, ¢ is the speed of light in vacuum,

N, :2ﬂjdrrizb(r,s) is the number of particles per unit axial length, and y, is the
0

o TN o 5 5 2 \-1/2 .
relativistic mass factor, which, to leading order, 1s y, =const= (l =l ) with
B,=V,/lc=V, /c.

Because the beam is axisymmetric, the canonical angular momentum £, is a constant

of motion, 1.e.,

dR,

—£=0. 2:1.2

s (2.1.2)
After performing a two-step canonical transformation, we have also found that the scalcd

transverse Hamiltonian for the single-particle motion

E=w!(s),(%.7,P..P,.s) 2.1.3)

iR 4 s

is an approximate invariant (for detailed analyses and definitions of w(s), H , ¥,

E, etc., see Zhou, Samokvalova and Chen, 2008). We have chosen the beam equilibrium
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distribution in the form similar to the Maxwell-Boltzmann distribution (Zhou,
Samokhvalova and Chen, 2008; Samokhvalova, 2008)

fy=Cexpl- BE - o,R,)], (2.14)
where C, £ and @, are constants. C is an integration constant, f 1s related to thc beam
emittance, and @, is the rotation frequency relative to the Larmor frame. The distribution
function f, defined in Eq. (2.1.4) is a Vlasov equilibrium, i.e., &f,/ds = 0. The kinetic

beam equilibrium theory makes the following two important predictions:
1. The thermal beam emittance is a constant.

£; = ?sz(vx - VX)2> = ———AB;;[’(’SH)ZE”C’SS) = const , (2.1.5)
2. The equation of state is adiabatic, i.e., T (s)r,,zrm (s) =const .
The rms envelope equation (2.2.4) is (Zhou, Samokhvalova and Chen, 2008)
2 2
Pinlt) B0, 40 ) s 19
where Q, (s)= w,&, 8,¢/2r,.(s)-Q,(s)/2 and Q_(s)= gB.(s)/y,mc . The beam density
profile is

) P, = S gl Kot L),

rbrmx (S) rb?;m\‘ (S) 4817;1 7 bz kBTJ.
(2.1.7)
where the scalar potential for the self-electric field is determined by the Poisson cquation
1o ag"”
-—| r=t—|=—4mgn,(r,s). (2.1.8)
r or or

It should be pointed out that because the derivation of the theory does not assume
specific magnetic profile as defined in Eq. (2.1.1) it i1s valid not only for the periodic
solenoid magnetic field but also for an arbitrary varying solenoid magnctic field.
Therefore, our results apply for the periodic focusing channel as well as for the matching
section between the electron source and the periodic focusing channel, which is important
in the design of clectron beams for HPM applications and beam experiments such as
University of Maryland Electron Ring (Bernal, Quinn, Reiser, et al., 2002).

2.2 Warm-Fluid Beam Equilibrium Theory (Samokhvalova, Zhou and Chen, 2006,
2007a and 2007b; Samokhvalova, 2008)

We have recovered the results of the macroscopic qualities in the kinetic beam
equilibrium theory [i.e., Eqgs. (2.1.5)-(2.1.8)] by solving the following adiabatic warm-
fluid equilibrium equations (Samokhvalova, Zhou and Chen, 2007b; Samokhvalova,
2008)

n,V-V(y,mv)= an{— Ve + Xx (B”' +B* )} -V.-P(x), (2.2.1)
c

V-(n,V)=0, (2.2.2)
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Vi (r,s)=-dmqn,(r,s), (2.2.3)
p.(r.s)=n,(r.s)k,T,(s), (2.2.4)
o (s)rbz,m (s) = const . @2.2.5)

The detailed analysis is available in our paper (Samokhvalova, Zhou and Chen, 2007b)
and Samokhvalova’s doctoral thesis (Samokhvalova, 2008).

2.3 Comparison between Theory and Experiment (Zhou, Samokhvalova and Chen,
2008; Samokhvalova, 2008)

Using our adiabatic thermal beam equilibrium theories, we have replicated the beam
density profiles at different axial distances in good agreement with the experimental
measurements conducted on the University of Maryland Electron Ring. Our equilibrium
theory 1s applicable to this experiment from the anode aperture to a distance prior to the
wave breaking initiated by high order density distribution fluctuations induced by a
pressurc force at the anode aperture. Wave breaking occurs at about one quarter of
plasma wavelength, which is about 30 cm in this example. Our equilibrium theories do
not explain the density distribution distortion in the present form, but it is possible to
develop a perturbation theory based on the equilibrium in the future.

By solving Egs. (2.1.6)-(2.1.8), we have calculated the beam transverse density
profiles of the UMER 5 keV, 6.5 mA electron beam at three axial distances: s = 6.4cm,
11.2 cm, and 17.2 c¢m, as shown in solid curves in Fig. 2.3.1. The dashed curves are the
equivalent Kapchinskij-Vladirmirskij (KV) beam density profiles (Kapchinskij and
Vladirmirskij, 1959). Compared with the experimental measurements (dotted curves), the
calculated beam density profiles are in good agreement. As the beam radius increases, the
beam density profile approaches to the KV (uniform) beam dcnsity profile, because the

beam temperature must decrease in order to keep 7, (s):2 (s) at a constant. In this

adiabatic process, the Debye length 4, = 72k, T, (s)/47°n,(0,5) = 0.54 mm is constant.

3. Design of High-Brightness Circular Electron Beams (Bemis, Bhatt, Chen and
Zhou, 2007a and 2007b)

An experimental demonstration of the thermal beam equilibrium over long
propagation distances requires a high-brightness circular electron beam which is well
matched into a periodic solenoidal magnetic focusing channel. To gain experiencc in the
design of high-brightness electron beams, we have developed, under the auspices of the
present grant, a method for the design of a high-brightness non-relativistic circular beam
system including a charged-particle emitting diode, a diode aperture, a circular beam
tunnel, and a focusing magnetic field that matches the beam from the emitter to the beam
tunnel. The applied magnetic field has been determined by balancing the forccs
throughout the gun and transport sections of the beam system. The method has been
validated by three-dimensional simulations.

While the detailed method is described in our paper (Bemis, Bhatt, Chen and Zhou,
2007b) and our US patent application (Chen, Bemis, Bhatt and Zhou, 2007), Figs. 3.1-3.4
summarize the results for a high-perveance electron beam at a voltage of 2.3 kV. This
system is scalable to moderately high voltages.
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Figure 3.1 shows the final results of an OMNITRAK simulation for a circular
electron beam which is emitted from an emitter (cathode) with a radius of 1.52 mm, a
current of 0.11 A, a cathode-to-anode distance of 4.11 mm at radius » =1.52 mm. The
diode voltage is 2300 V.

Figure 3.2 shows plots of E, versus z at »=1.0 mm and B,(0,z) versus z from the

OMNITRAK simulation after two iterations. The radial electric field vanishes at the
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Figure 2.3.1 Normalized beam transverse density profiles of a 5 keV, 6.5 mA
(4¢,,,. =30 mm-mrad) electron beam at three axial distances: s =6.4cm, 11.2 cm, and

xrms
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17.2 ¢cm. The solid curves are from theory, the dotted curves are the experimental
measurements, and the dashed lines are the equivalent KV beam density distributions.
The densities are normalized to the equivalent KV beam density (from Zhou,
Samokhvalova and Chen, 2008).

8.0

X (mm)

-8.0 : a

0 z (mm) 10.0

Figure 3.1 OMNITRAK simulation of the dynamics of an electron beam emitted from a
flat circular cathode with a radius of 1.52 mm and a current of 0.1] amperes in an
optimized magnetic field. Here, the cathode-to-anode distance is 4.11 mm at

r =1.52 mm, the circular anode aperture has a radius of 1.8 mm, and the beam tunncl has
a radius of 6.0 mm. The diode voltage is 2300 V (from Bemis, Bhatt, Chen and Zhou,
2007b).




Figure 3.2 Plots of E, versus z at r =1 mm (solid curve) and B, (0,2) versus z (dashed

curve) from the OMNITRAK simulations after two iterations (from Bemis, Bhatt, Chen
and Zhou, 2007b).

-2
-2 -1 0 1 2

x (mm)
Figure 3.3 Plot of the electron distribution at z =8 mm in the phase plane (x,y) (from
Bemis, Bhatt, Chen and Zhou, 2007b).

emitter (i.e., at z=0), achieves a maximum magnitude at z=4.11 mm, and then

approaches to a constant value well inside the beam tunnel. The applied axial magnetic
field at the emitter vanishes, increases to 640 G at the aperture, and then falls to about
160 G well inside the beam tunnel.

Figure 3.3 shows the electron distribution in the phase plane (x, y) at z =8 mm. The

beam distribution maintains transverse uniformity. Indeed, the normalized fourth moment
2
<r4 >/<r2> which is equal to 4/3 for a transversely uniform density distribution, remains

4/3 within +1% . The outer beam radius remains the same as the emitter radius within 1
to 3%. The beam is very bright, and its normalized rms emittance is predicted to be 0.33
mm-mrad, which i1s 1.15 times the intrinsic normalized rms emittance of 0.33 mm-mrad.

Our design method is limited to a nonrelativistic beam matching into a uniform
magnetic field. We plan to extend our design method to include thermal effects and beam
matching into periodic solenoidal (permanent) magnetic focusing field. We will also
extend our design method to relativistic electron beams in which both relativistic cffects
and self-magnetic field effects are important.

4. Development of Elliptic Beam Theory for High-Power Microwave Device

Applications (Bhatt, 2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and
Chen, 2008)
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Existing HPM devices employ either a pencil electron beam or an annular elcctron
beam. One of the main objectives in high-power microwave (HPM) research has been to
develop innovative science and technology which could lead to improve the efficiency,
output power level, and other performance (such as weight reduction) of high-power
microwave (HPM) devices. A promising approach is to use a large-aspect-ratio elliptic
electron beam rather than the conventional pencil or annular electron beam as the energy
source. Compared with a conventional HPM device, a HPM device powered by an
elliptic electron beam has the following attractive features:

a) Power scalesas f~' instead of £ (where f is the frequency), thus more

power;

b) Low eftective beam perveance, thus higher efficiency;

¢) Use of permanent magnets for beam focusing, thus lower energy consumption;

and

d) Low cathode loading, thus longer device lifetime.

In order to experimentally demonstrate high-power elliptic electron beams which can be
employed in HPM and vacuum electron devices, we must advance our understanding of
the generation, compression, focusing and transport of elliptic electron beams.

Building upon our recent work on elliptic electron beam formation (Bhatt and Chen,
2005; Bhatt, Bemis and Chen, 2005 and 2006) and periodically twisting elliptic electron
beams (Zhou, Bhatt and Chen, 2006), we have developed a kinetic theory of periodically
twisting elliptic bcams and both cold-fluid and kinetic theories of non-twisting elliptic
electron beams under the auspices of the grant (Chen, 2006).

4.1 Kinetic Equilibrium Theory of Periodically Twisting Elliptic Electron Beams
(Zhou, 2006; Zhou and Chen, 2006a and 2006b)

We have devcloped our kinetic equilibrium theory to examine effects of beam
temperature on periodically twisting elliptic electron beam. In the kinetic equilibrium
theory (Zhou, 2006; Zhou and Chen, 2006a and 2006b), we have derived a constants of
motion analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form
using the two constants of motion. We have obtained the generalized envelope equations
which include beam temperature effects. In the cold-fluid limit, the generalizcd envelope
equations recover those in the cold-fluid beam equilibrium theory (Zhou, 2006; Zhou,
Bhatt and Chen, 2006). Detailed results are available in our paper (Zhou and Chen,
2006b) and Zhou’s doctoral thesis (Zhou, 2006).

To 1llustrate the effects of beam temperature, we have considered a relativistic elliptic
beam with V, =198.5 keV , current /, =85.5 A, aspect ratio a/b=5, and non-

axisymmetric periodic permanent magnet focusing with B, =24 kG, §=2.2 cm, and
ky, [k, =1.52. Such a relativistic elliptic beam could be used in a 10 MW L-Band

ribbon-beam klystron (RBK) for the International Linear Collider (ILC).

As shown in Fig. 4.1.1, the solid curves represent the beam semi-axis envelopes and
twist angle with zero temperature which is corresponding to a cold beam, while the
dotted curves represent the beam envelopes and twist angle with 2.5 keV on-axis
temperature. It is evident in Fig. 4.1.1 that the temperature effects on the beam envelopes
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and twist angle are negligibly small. Since an actual relativistic elliptic beam in a well
designed system will have a temperature which will be considerably less than 2.5 keV,
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Figure 4.1.1 Plots of (a) envelopes a(s) and b(s) and (b) twist angle &(s) versus the

axial distance s for the relativistic periodically twisting elliptic electron beam. The solid
curves are the generalized envelope solution for a zero-temperature beam, whereas the
dotted curves are for a 2.5 keV on-axis temperature beam (from Zhou and Chen, 2006b).

the results in Fig. 4.1.1 implies that the temperature effect on the beam envelopes and
twist angle is expected to be negligibly small (Zhou and Chen, 2006b).

4.2 Cold-Fluid Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt,
2006; Zhou, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

For HPM and vacuum electron device applications, non-twisting elliptic electron
beams are desirable. Under auspices of the present grant (Chen, 2006), we have




developed a cold-fluid equilibrium theory of a non-twisting elliptic electron beam (Bhatt,
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008), which is a generalization of
our cold-fluid equilibrium theory of a periodically twisting elliptic electron beam (Zhou,
2006; Zhou, Bhatt and Chen, 2006).

We have used the combination of a periodic non-axisymmetric magnetic field and a
quadrupole magnetic field to focus a nearly straight large-aspect-ratio elliptic beam,
whose twist angle vanishes approximately. The (nonlinear) cold-fluid equilibrium
equations are:

ﬂbc%nb +V, (m,V,)=0, @.2.1)
Vigt=pB;'Vidl =-4mn,, (4.2.2)

n,,(ﬁ,, Ziv,v }vl }‘f&[—Lvlgﬁ + B8, x B + \;le;*'(s)e:}m.za)
b b

For the beam dimensions small relative to the characteristic scale of magnetic variations,
i.e., (koox) /6 << 1 and (ko vy)2/6 << 1, the combined magnetic field can be described to
the lowest order in the transverse dimensions as

| dB. (s)| k2 k3, ,
B = B,(s)e, - ds(S){ k‘:‘ e ko },]+Bq(s)[yex +xey], (4.2.4)

where &y =2%/S8, kgx+k§y=k§ , 8 1s the axial periodicity length, and
'(s)= 6B Y
B, (s)= 08! /ayj(s‘o‘o) oBY /6x| ,

(5,0,0)°
We seek solutions to Egs. (2.4.2.1)-( 2.4.2.3) of the form

n(x,,s)= Ny = ¥ = v s
e ,m(s)b(s)®[l ) zf(s)]’ e
Vl(xl,s)= [/1 ( y],Bbce~ l,u y+a lﬂbce (4.2.6)

In Egs. (4.2.5) and (4.2.6), x, =Xe, +ye; is a transverse dlsplacement in the twisted
coordinate system; (s) is the twist angle of the ellipse; ®(x)=1if x>0 and ©(x)=0
if x<0; and the functions a(s), b(s), w (s), ,uy(s), a,(s), a, (s) and 6(s) are to be

determined self-consistently [see Eqs. (4.2.8)-(4.2.12)]. The self-electric and self-
magnetic fields are well known for an elliptical beam with density distribution specified

i By, W42 5 048
3 o
- =_%‘ﬁv_;(%+%) 4.2.7)

Using the expressions in Egs. (4.2.4)-(4.2.7), we have shown that both the
equilibrium continuity equation (4.2.1) and force equation (4.2.3) are satisfied if the

dynamical variables a(s), b(s), u (s)=a'da/ds, ,uy(s)s b~'db/ds , a (s), ay(s) and

O(s) obey the (cold-fluid) generalized beam envelope equations (Chen and Zhou, 2007;
Zhou, Bhatt and Chen, 2008)
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Equations (4.2.8)-(4.2.12) support non-twisting elliptic electron beam solutions in thc
non-relativistic regime which is of interest to vacuum electron device applications, as
wecll as in the relativistic regimes which is of interest to HPM applications.

4.3 Kinetic Equilibrium Theory of Non-Twisting Elliptic Electron Beams (Bhatt,
2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

We have devcloped our kinetic equilibrium theory to examine effects of beam
tcmperature on non-twisting elliptic electron beam. In the kinetic equilibrium thcory
(Bhatt, 2006; Zhou, Bhatt and Chen, 2008), we have derived a constants of motion
analogous to the Courant-Snyder invariant (Courant and Snyder, 1958). We have
constructed a Vlasov beam equilibrium distribution of the Kapchinskij-Vladimirskij form
using the constant of motion. We have obtained the (kinetic) generalized cnvelope
equations which include beam temperature effects. In the cold-fluid limit, the (kinctic)
generalized envelope equations recover the cold-fluid ones (Chen and Zhou, 2007; Zhou,
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Bhatt and Chen, 2008). Detailed results are available in our paper (Zhou, Bhatt and Chen,
2008) and Bhatt’s doctoral thesis (Bhatt, 2006).

4.4 Application and Simulation Validation of Cold-Fluid and Kinetic Equilibrium
Theories (Bhatt, 2006; Chen and Zhou, 2007; Zhou, Bhatt and Chen, 2008)

As an example, we have considered a relativistic elliptic beam that can be used in a
10 MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC).
The beam has a current of /, =111.1A, a voltage of ¥, =120kV and an aspect ratio of

20:1 . Solving the (cold-fluid) generalized envelope equations (4.2.8)-(4.2.12), the
hybrid magnetic fields are determined to be the form of Eq. (4.2.4) with
B_(s)= -2000sin(kgs) G , B =80.8G/em , § =22 cm , and ko, /ky, =20 . In Fig.
4.4.1, the solid curves are the beam semi-axes a(s) and b(s) calculated from the (cold-
fluid) generalized envelope equations, whereas dotted curves are from the self-consistent
PIC PFB2D simulation. The twist angle vanishes, i.e., 8(s)=0, in this example.

To study the temperature effects in the 111.1 A and 120 kV elliptic electron beam, we
have solved the (kinetic) generalized envelope equations with nonzero initial thermal

emittances, 1.€., g,thx = kBTaz(s = 0)/m}/b ,Bbzc2 and g,zh’y = kBsz(s = 0)/m}/b ,[31,26'2. As
shown in Fig. 4.4.2, the elliptic beam envelopes are calculated for three different
temperature choices: 0 eV, 50 eV and 100 eV. Compared with the cold beam envelopes
shown as solid curves in Fig. 4.4.1, the warm beam envelopes are found to increase

slightly as the beam temperature increases, while the aspect ratio of the beam decreases
from 20:1 to 16.4:1 as the beam temperature increases from 0 eV to 100 eV.
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Figure 4.4.1 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for

the L11.1 A, 120 kV relativistic elliptic electron beam with zero temperature. The solid
curves are the (cold-fluid) generalized envelope solution, whereas the dotted curves are
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008).
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Figure 4.4.2 Plots of the beam envelopes (a) a(s) and (b) b(s) versus the axial distance

s forthe 111.1 A, 120 kV relativistic elliptic electron beam for three different
tempcrature choices: 0 eV, 50 eV and 100 eV (from Zhou, Bhatt and Chen, 2008).

For a practical HPM device, we have assumed that the elliptic beam is gencrated from
an electron gun with an intrinsic temperature of 0.1 eV and a current density of 1.5 A/cm.
The elliptic beam has to be compressed by a factor of 471.5 in area to achieve a current
density of 707.3 A/cm? in the focusing channel. During the compression, the temperaturc
increases by a factor of 471.5 to 47.2 eV. Therefore, in our calculations, a temperature of
50 eV is a reasonable assumption. As shown in Fig. 4.4.3, the envelopes of the clliptic
beam with a temperature of 50 eV are obtained by solving the (kinetic) generalized
envelope equations (solid curves) and by the PFB2D PIC simulations (dotted curves).
Both results showed a slight increase in the two envelope dimensions and the aspect ratio
of the elliptic beam decreases to 17.8, compared with the cold elliptic beam.
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Figure 4.4.3 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for

the 111.1 A, 120 kV relativistic elliptic electron beam for a temeprature of 50 eV. The
solid curves are the (kinetic) generalized envelope solution, whereas the dotted curves are
from the PFB2D simulation (from Zhou, Bhatt and Chen, 2008).
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Kinetic equilibrium of a periodically twisted ellipse-shaped charged-particle beam
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A Vlasov equilibrium of the Kapchinskij-Vladimirskij form is obtained for a periodically twisted
ellipse-shaped charged-particle beam in a nonaxisymmetric periodic magnetic focusing field. The single-
particle Hamiltonian dynamics is analyzed self-consistently. A constant of motion analogous to the
Courant-Snyder invariant is found. The equilibrium distribution function is constructed. The statistical
properties of the beam equilibrium are studied. In the zero-temperature limit, the generalized envelope
equations derived from the kinetic equilibrium theory recover the generalized envelope equations obtained
in the cold-fluid equilibrium theory. Examples of periodically twisted elliptic beam equilibria are
presented, and potential applications are discussed. For ribbon-beam amplifier and ribbon-beam klystron
applications, the kinetic equilibrium theory predicts that the effect of beam temperature on the beam

envelopes is negligibly small.

DOI: 10.1103/PhysRevSTAB.9.104201

I. INTRODUCTION

A fundamental understanding of the kinetic equilibrium
and stability properties of high-intensity electron and ion
beams in periodic focusing fields is desirable in the dcsign
and operation of particle accelerators [1-14], such as stor-
age rings and rf and induetion linacs, as well as vacuum
electron devices, such as klystrons and traveling-wavc
tubes with periodic permanent magnet (PPM) focusing.
There are two well-known cquilibria for periodically
focused intense beams, including the Kapchinskij-
Vladmirskij (KV) equilibrium [7-9Y] in an alternating-
gradient quadrupole magnetic focusing field and the peri-
odically focused rigid-rotor Vlasov equilibrium [10,11] in
a periodic solenoid magnetic focusing field. In general, for
linecar focusing forces, self-consistent beam distributions
can be formally constructed using a matrix formulation
[12,3].

It was shown formally in Ref. [12] that self-consistent
beam distributions can be obtained that allow elliptical
space-charge beams of arbitrary aspect ratio and with
arbitrary rotation angle of the cllipse as long as the field
is lincar. However, obtaining concrete equilibria with non-
upright ellipses is nontrivial. The previous explicitly
known Vlasov equilibria of KV form [7,9-11] for high-
intensity, space-charge-dominated charged-particle beams
propagating in the alternating-gradient quadrupole mag-
netic focusing field and the periodic solenoid magnetic
focusing field charged-particle beams are circular on aver-
age: that is, the averages of the beam envelopes in different
transverse directions over onc period are the same.

There is considerable interest in the research and devel-
opment of high-intensity charged-particle beams with a
large aspect ratio transverse to the direction of propagation.
First, large-aspect-ratio clliptic beams (or ribbon beams)
can transport larger amounts of beam currents at reduced
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intrinsic space-charge forces and energies. Sccond, they
couple efficiently to planar or rectangular rf structures. The
combination of the space-charge reduction and efficient
coupling allows efficient rf generation in vacuum clec-
tronic devices, and efficient acceleration in particle accel-
erators. Third, clliptic beams provide an additional
adjustable parameter (c.g., the aspect ratio) which may
be useful for bettcr matching a bcam into a periodic
focusing channel [14].

One important application of ribbon beams is in the
development of advanced radiation devices such as
ribbon-beam amplifiers (RBAs) and ribbon-beam klystrons
(RBKs), which have advantages over the corresponding
conventional (circular-beam) devices in terms of efficiency
and operational parameters. Other applications include the
development of advanced aceelerators capable of gencerat-
ing nonconventional beams, e.g., a planar radio-frequency
(rf) linac producing ribbonlike bunches of charged
particles.

Although sheet beams have been discussed in the litera-
ture for four decades, the Vlasov equilibrium of a high-
intensity, space-charge-dominated beam with a large-as-
pect-ratio elliptic cross section has not been discovered
until this paper. Sturrock [15] first suggested usc of a
periodic magnetic focusing consisting of an array of
planar-wiggler magnets for rectilincar beams. Zhang et
al. [16] had some modest success in the experimental
demonstration of the transport of a low-intensity (10 A,
500 kV) sheet beam in a planar-wiggler magnetic ficld, and
observed considerable beam loss. Researchers made use of
the multiple-time-scale analysis and the paraxial approx-
imations to obtain the smooth-beam approximation of
high-intensity sheet beam equilibria [17,18]. Reeently,
Russell er al. demonstrated the transformation of a cireular
beam into a sheet beam using asymmetric lenses [ 19]. The
authors discovered a cold-fluid equilibrium for a high-

© 2006 The American Physical Society
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intensity pcriodically twisted elliptic bcam in a nonasym-
metric periodic magnetic focusing field [6].

In this paper, it is shown that therc exists a Vlasov
equilibrium for a periodically twisted large-aspect-ratio
intensc charged-particle beam with uniform density in
the transverse plane propagating through a nonaxisymmet-
ric pcriodic magnetic focusing field. The single-particlc
Hamiltoman of such a periodically twistcd large-aspect-
ratio elliptic beam is investigated. The constant of motion
analogous to the Courant-Snyder invariant [20] is found.
The equilibrium beam distribution is constructed. The
beam envelope equations and flow vclocity cquations are
derived. In the zero-temperature limit, they are consistcnt
with the generalizced envelope equations derived from cold-
fluid equilibrium theory [6]. Statistical properties and pos-
sible applications of the present bcam equilibrium are
discussed.

II. VLASOV EQUILIBRIUM THEORY

We consider an cllipse-shaped, continuous, intensc
charged-particle beam propagating with constant axial
velocity B, ce, through an applied nonaxisymmetric peri-
odic magnctic focusing field. The applied nonaxisymmct-
ric periodic magnetic focusing field insidc the thin bcam
can be approximated by

Oy

k2 :
B = —B,sin(kys)e- + By cos(kos)[ﬂxex + —ye\}
) ko ko ™

(M

where s = z is the axial coordinate, ky = 27/S, k3, +
ki, = kg, and S is thc axial periodicity length. The 3D
mégnetic field in Eq. (4) is fully specificd by the threc
parameters By, S, and ky,/ko,. The associated magnetic
vector potential can be expressed as

k?‘, k2
A = —B, sin(kos)[—iz"ye_‘ + iz"xc‘. . Q)
kg kj

To determine the sclf-electric and self-magnetic ficlds of
the beam sclf-consistently in the present paraxial approxi-
mation, we assume that the density profile of the beam is
uniform inside the beam boundary, i.c.,

- Nh . 3 .172 3 )72
i e O(' a(s) bl(s))' &
In Eq. (3), %= xcos[f(s)] + ysin[6(s)] and § =

—xsin[0(s)] + ycos[6(s)] represent the twisted coordinate
as illustrated in Fig. 1; 6(s) is the twist angle of the ellipse;
O(x) = 1 if x>0 and O(x) = 0 if x <0. The density of
the elliptic beam with semimajor axis a(s) = a(s + S)
and semiminor axis b(s) = b(s + S) is uniform in the
beam interior (¥*/a* + 3*/b* =1). The semimajor
and scmiminor axes have thc same periodicity as thc

FIG. 1. Laboratory and twisted coordinate systems.

applied magnctic field with S=2w/ky. N, =
2w [* dxdyn,(x, y, s) = const is the number of particles
per unit axial length. In the paraxial approximation, the
Budker parametcr of the beam is assumed to be small, i.c.,
G*N,/mc* < y,, and the transverse Kinetic energy of a
beam particle is assumed to be small compared with its
axial kinctic energy. Hcre, c is the speed of light in vacuo,
vy, = (1 — B37)~'/2 is the relativistic mass factor, and ¢ and
m arc the particle charge and rest mass, respectively.

From the equilibrium Maxwell equations, we find that
the self-electric and self-magnetic fields, Ef and B, are
given by

TP SE I
B y.9) a(s) + b(s)[a(s) R b(S)c‘]' o

2gN v X
SIBNE §,s)=——t |- L e+ .| (5
By B35 = iy - b(s)[ e T}
in the beam intcrior (¥*/a> + §2/b* < 1). It is convenient
to express the self-fields in terms of the scalar and vector

potentials defined for ¥*/a* + §2/b* < 1 by

®*(%, 5, 5) = B, 'ANL 5, 5)

= __%[L +L} )

a(s) + b(s)| a(s)  b(s)
where A%, ¥, 5) = AUX, ¥, s)e., E(x, 3. 5) =
—(e;3/9% + €;0/3y) ", and B = (—e;d/a% +

€:0/37)AS.

In the paraxial approximation, the transverse motion for
an individual particle in the combined self-fields and ap-
plied magnctic ficld is dcscribed by the normalized per-
pendicular Hamiltonian #; = H | /v, B,mc,
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. 1 k(Z)y 2 nate (x,y, P, Py) to the canonical coordinatc
B8 3P 0Py ) = 5 [(Px + /() 2 ) (x1, Y1, Py1, Pyy) involves two steps.
20 i We first transform the Cartesian canonical coordinatu
4 (p _ Kz(g)@xy:' Ce PP )to a twisted canonical coordinate (%, ¥, P )
. g
kg using the generating function
K =2 <D
= | 7 e .
a%ble B Fa(x,y:P,, P s) = P.[xcos0(s) + ysind(s)]
where (x, P,) and (y, P,) arc canonical conjugate pairs, + P,[—xsinb(s) + ycos6(s)] (8)

Jr(s) = gB.(5)/2y, Bymc®, K =2¢*N,/viBimc® is

the self-field perveance, and the normalized transverse It follows from Eq. (8) that

canonical momentum P, = (P,, P,) is related to the trans-

verse mechanical momentum p ¢ by P, = (y,B8,mc)~! X P, 13 s6(s) — P, sinf(s), (9a)

(pL + qAT/c). = smO(v) + P cosb(s), (9b)
It is convenient to transform the Hamiltonian in the B -

Cartesian canonical coordinate (x, y, P,, P,) to a new ca- = xcosf(s) + ysind(s), 28

nonical coordinatc (x,, y;, P,y P,)), so that the new ¥ = —xsinf(s) + ycosé(s). (9d)

Hamiltonian assumes a simplcr form from which the in-

variants of motion are easily identified. The transformation =~ The Hamiltonian in the twisted canonical coordinate is

of the Hamiltonian from the Cartesian canonical coordi-  then expressed as

-

>

Hl(-’%’,ﬁr I-),(r P)" ‘Y) . Al(-x' y’ Px' P.\" S) + an/aJ

= % P, cosf(s) — P, sinb(s) + \/K:(s)é%"isinﬂ(s) g K:(S)%i COSG(S):'I
+ %[F‘sina(s) + P, cosf(s) — 4/, (s ) , xcosﬂ(a) + /K ) siné(s) }

52
I (%+y—)+(f>xy'—ﬁ,.i)&(°). (10)

a+b b ds

The equations of motion associatcd with the Hamiltonian in Eq. (10) are

v ?;Inl =P, + C()E +[0'(s) — a,(s)]5, (ia)
o, .
y’=a—,3v-=P = CE)Y — [069) = a, ()], (L)
S _8H, k3 cos?[6(s)] + kgysinz[ﬂ(s)] 2K B
PL=-Tt e [K:(s) z o rERT )]} Cls)B, + [0(5) — a,(5))P,
kg, = ko) sin[26(s)] .
- KL(S)( K ) 7 ) (11c)
T o, B kg sin’[6(s)] + ko)cosz[ﬁ(s)] 2K
AT [K"(S) 7 b)a(s) + b( )]}‘ + CWPy = 1805) = (P
Koy = Koo\ sin[26(s)] .
- K_,(s)( . ) ok | (11d)
where prime denotes derivative with respect to s,
Koy = k.
C(s) = /K, (s)—=5— sin[26(s)], (12)
2k;
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2 k
a(s) = —,/K:(.\)[l:"sm [6(s)] + —cos [0(()]} (13)

0

and

ol —,/K:(s)[’;‘"

0

2[(a(s)]} (14)

The functions &, and a, are related to the variables a, and
a, in the cold-fluid equilibrium theory [6]. Indeed, by
adding Egs. (10) and (11) and subtracting Eq. (10) from
Eq. (11) in [6], and carrying out the integrations on result-
ing equations with the initial condition a,(0) = a,(0) =
0, it is rcadily shown that the functions a, and a, in
Egs. (13) and (14) correspond to a particular solution to
Egs. (10) and (11) in [6].

As a second step, we apply another transformation from
the twisted canonical variables (%, 3, P,, P,) to the canoni-
cal variables (x), y;, P, Py) using the generating funetion

oo 1 wi(s) .
FZ(Xr ¥ P\'Iv Pyl' S) = §|:W (S) - C(.\'):|X2

+ 1[’”;(") + C(s)}y2

2 wy(s)
‘\-’Pjrl o .‘—YP_VI i
wls)  wy(s)

where w(s) = w (s + §) and wy(s) = w,(s + §) are pe-
riodic functions solving the differential equations

(15)

W) _ i) — ce) — g — 2K
Y L e e )
1
i) (16)
w(s) S 2K
w,G) =~ — = e e Bl
|
= , 1
wf:(x) 0
It follows from Eq. (15) that
Do W_/‘(S)_ -~ le
P, = l:w.‘(s) C(s)]x + _wx(s)' (18a)
=, gl B 18b)
y [w').(.v) . ]} w,(s)’ (
X
X)) = W‘,(s)’ (ISC)
_ ¥
= (18d)
The Hamiltonian in the canonical coordinate

(xy, vi. Py, Pyy) 1s then expressed as

01‘1
ds
_I{PEI_,_P;I X

2 w(s)

2 wi(s)  wi(s)

i
wl(S)}
dso(s)

Hll(xl-yl-leval:s) HJ.(‘) P P\ J)+

Pa = xiPy) (19)

where we have introduced and demanded

de(s) _ wy(s) [de(s) a'}_u (s) {(m(‘) a}

ds T w () B wi(s)

(20)

Following Eq. (20), it can be shown that the twisted angle
A(s) has to satisfy the differential equation

db(s) _ wis)a,(s) = wis)er (s)

ds wi(s) — Wi 2(s) .

2D

The motion described by the simplified Hamiltonian in the
new canonical coordinate (x,, y,, Py, Py,) in Eq. (19) is
described by the equations

i dH\ L Py dels) . 2a)
Uap, wis) g = fas
dH Py d
y, =2 ¢(S)X1’ (22b)
APy v‘(.s) ds
OH X de(s)
pLo==""l o L P, (22
i axy w(s) ds ke
oH lo(s
pl oA 1 _dRU), g
X ay, wi(s) ds
From Eq. (22), it is readily shown that
B =g bad 5 + (23)

is an exact single-particle constant of thc motion for the
Hamiltonian in Eq. (19).

We consider the following trial choice of the Vlasov
equilibrium distribution function:

N
[y P, Py, ) = —2—8(x} + y3 + P}, + P, — &),
T E

)
(24)

where df,/ds = 0, g7 = const > 0 is an cffective emit-
tance, and §(x) is the Dirac § function. As will be shown in
Sec. III, the density profilc of the beam desecribed by the
distribution function f, is consistent with the uniform-
density profile within an ellipse which 1s the l\cy require-
ment for the quantity E = x3 + y3 + P2, + P2, to be a
constant of motion. Therefore, the dlstnbuuon function
defined in Eq. (24) is indeed a Vlasov equilibrium, i.c.,
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g

25
o (25)

HIL STATISTICAL PROPERTIES

The distribution function described in Eq. (24) has the
following statistical propcrties. First, the distribution is
consistent with the assumed density profile in Eq. (3), 1.e.,

1
ny(%, j,5) = —— [[fdledP_ﬂ

W oW,
_ [ Np/(merw wy), if Ber+yier=1,
0, otherwise.
(26)
The beam has the uniform-density profile given in Eq. (3),
provided that a = /é7w, and b = Jferw, are satisfied.

Under these self-consistent conditions, Egs. (16), (17), and
(21) can be expressed as

d’a [bz(a_?; = Zasiet,) + azag

ds? a* —b*

RB.—k
+ Kzo% cos(kys) sin(26) — 2./K:0a_‘.sin(kos):|a
0
2K &2
s 2 o

d*b n [az(a% ~ Daian) +-Bred

o) b ] Q9
ds- a- — b-

k.’! _ k?',

+ /Kzoo.\k—o_\ cos(kys)sin(26) + 2 /xkga, sin(kos)]b

0

2K s;,

. =T 28
a+b b @)
2 = ]2

deé = aa, obi(0 718 (29)

ds a* — b?

Equations (27)—(29) are written in a form similar to the
generalized envelope equations in the cold-fluid equilib-
rium theory [6]. They are identieal to the generalized
envelope equations of a(s), b(s), and 6(s) in the cold-fluid
equilibrium theory, exeept that the emittance terms appear-
ing on the right-hand side of Egs. (27) and (28) are zero in
the eold-fluid equilibrium theory. Thereforc, they are more
general than the eold-fluid equilibrium theory.

Second, in the normalized units, the average (macro-
scopic flow) transverse velocity of the beam equilibrium
described by Eq. (24) is given in the twisted coordinates by

N, A\
vV, = ( b ) : fvlfdledP‘.,
TeTw oW, wow,

(30)

The flow velocity in Eq. (30) is identical to the flow
velocity derived by the cold-fluid equilibrium theory [6]
provided that the relations g, = «'/a = w'./w, and p, =
b'/b = w}/w, are satisfied.

As a third statistical property, the beam equilibrium
described by Eq. (24) has the effective transverse tempera-
ture profile (in dimensional units)

N, -1 2
TG 5 = (i) T2 [va = VR fdpadp,
TETW, W, 2
nt(‘z'y,,ﬂiszT 1 1 SN
=— P - +)1-S-=] (3l
2 <a2 b2>< a? I)2> Gh

As the fourth property, the rms emittances of the beam in
the X and the ¥ directions are

e = @@V =L G2
l Y o
ms = e N5 — V5)h) = TT (32b)

Finally, the Vlasov elliptic beam equilibrium has two
limiting cases which are well known. It recovers the famil-
iar periodic (circular) rigid-rotor Vlasov cquilibrium [10]
by setting the major-axis equal to the minor axis of the
beam ellipse. It also reeovers the familiar constant-radius,
uniform-density rigid-rotor Valsov equilibrium [9] by tak-
ing the limit of a uniform magnetic field with B. = B =
const.

IV. EXAMPLES

We illustrate examples of periodically twisted Vlasov
elliptic beam equilibria in a periodic nonaxisymmetric
magnetic focusing field and the temperature effects with
numerical calculations. A numerical module in the PFB2D
code [6,21] has been developed to solve the gencralized
cnvclope equations (13), (14), and (27)—(29), which deter-
mines the rotational flow velocity, the outer equilibrium
major axis a(s) and minor axis b(s) of the beam ellipse, and
the twisted angle 8(s).

In particular, we eonsider a nonrelativistie elliptic beam
with voltage V), = 2.29 keV, current I, = 0.11 A, aspect
ratio a/b = 6, and nonaxisymmetric periodic permanent
magnet focusing with By = 337.5G, § = 1.912 cm, and
koy/ko, = 1.6, which is corresponding to a beam design for
a high-efficiency 200 W RBA under dcvelopment at
Massachusetts Institute of Technology (MIT) and beam
power technology for wireless communication. For such
a system the matched solution of the generalized envelope
cquations (13), (14), and (27)=(29) is caleulated numeri-
cally as shown in Figs. 2 and 3 for several maximum (on-
axis) temperature choices and fixed parameters: &, =
1.90cm™", ko, =3.03em™, /K5=104cm™!, and
K = 1.52 X 1072. The solutions to the generalized enve-
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FIG. 2. Plots of (a) envelopes a(s) and b(s) and (b) twist angle

#(s) versus the axial distance s for the nonrelativistic twisted
ellipuc beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dotted curves
are for a 1 eV on-axis temperature beam.

lope equations (13), (14), and (27)—(29), displaycd as solid
and dotted curves in Figs. 2 and 3, show that the semiaxes
of the elliptical beam remain almost constant with small-
amplitude oscillations, that the oricentation of the ellipse
twists periodically with an amplitude of ten degrees.

The solid lines in Figs. 2 and 3 represent the beam
envclopes and twisted angle with zero temperature which
is corresponding to a cold beam, while the dotted curves
represent the beam envelopes and twisted angles with 1 eV
on-axis temperature in Fig. 2 and 10 eV on-axis tempera-
ture in Fig. 3, respectively. The aspect ratio of the beam
reduces from 6 to 4 as the on-axis temperature of the beam
increases from 0 to 10 eV, i.e., the elliptic beam becomes
more circular. However, the twisted angle is almost un-
changed as the on-axis temperature increases from 0 to
10 eV. For the elliptic beam designed for the 200 W ribbon-
beam amplifier, the temperature of the beam is estimated to

0.6 T
(a) 0eV
e 10eV

0.4
= [PUTag PP Ry PO Ry PP Ry PO R P a3 ™s
£
S a(s)
7]
Q
o
o
202
C
i}

b(s)
0.0 :
0 4 8 12 16 20
s (cm)
0.4
(b) 0eV
® 10 eV

0.2
0.0
iy
=

-0.2

-0.4

0 4 8 12 16 20
s (cm)

FIG. 3. Plots of (a) envelopes a(s) and b(s) and (b) twist angle
f(s) versus the axial distance s for the nonrelativistic twisted
elliptic beam. The solid curves are the generalized envelope
solution for a zero-temperature beam, whereas the dotted curves
are for a 10 eV on-axis temperature beam.

be 0.1 eV from simulations [22,23]. In such a case. the
temperature effect 1s negligible.

To further illustrate the effects of beam temperature, we
consider a relativistic clliptic bcam with V,, = 198.5 keV,
current I, = 85.5 A, aspeet ratio a/b = 5, and nonaxi-
symmetric periodic permanent magnet focusing with B, =
24kG, S =22cm, and ky,/kg, = 1.52. [Such a relativ-
istic elliptic beam could be used in a 10 MW L-band RBK
for the International Linear Collider (ILC).] For such a
system the matched solution of the generalized cnvelope
equations (13), (14}, and (27)—(29) is caleulated numeri-
cally with the corresponding parameters: Ay, =
1.57ecm™!, /kp=0732em™", and K =1.13 X 1072
As shown in Fig. 4, the solid lines represent the beam
semiaxis envelopes and twist angle with zero temperature
which is corresponding to a cold beam, while the dotted
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FIG. 4. Plots of (a) envelopes a(s) and b(s) and (b) twist angle
6(s) versus the axial distance s for the relativistic twisted elliptic
beam. The solid curves are the generalized envelope solution for
a zero-temperature beam, whereas the dotted curves are for a
2.5 keV on-axis temperature beam.

curves represent the beam envelopes and twist angle with
2.5 keV on-axis temperature. It is evident in Fig. 4 that the
temperature effects on the beam envelopes and twist angle
are negligibly small. Sinee an actual relativistie elliptie
beam in a well designed system will have a temperature
which will be considerably less than 2.5 keV, the results in
Fig. 4 imply that the temperature effect on the beam
envelopes and twist angle is expected to be negligibly
small.

V. CONCLUSIONS

The single-particle Hamiltonian of a periodically
twisted large-aspect-ratio elliptic beam in a nonaxisym-
metric periodic magnetic focusing field has been investi-
gated. A constant of motion analogous to the Courant-
Snyder invanant has been found such that the self-

consistent beam equilibrium can be constructed as a func-
tion of the constant of motion. The beam envelope equa-
tions and flow velocity equations have been derived. They
are eonsistent with the generalized envelope equations
derived from the cold-fluid equilibrium theory [6] when
the temperature is taken to be zero. Statistical properties of
the present Vlasov elliptic beam equilibrium have been
studied. For current applications of interest, namely, the
RBA and RBK, the temperature effeets have been found to
be negligibly small on periodically twisted large-aspect-
ratio elliptic beams.
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Warm-fluid equilibrium theory of a thermal charged-particle beam
in a periodic solenoidal focusing field
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A warm-fluid equilibrium theory is presented which describes a new thermal equilibrium of a
rotating charged-particle beam in a periodic solenoidal focusing field. Warm-fluid equations are
solved in the paraxial approximation. The rms beam envelope, the density and flow velocity profiles,
and the self-consistent Poisson cquations are derived. Density proliles are calculated numerically for
high-intensity and low-intensity beams. Temperature effects in such beams are investigated. Radial

confinement of the beam is discussed. © 2007 American Institute of Physics.
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1. INTRODUCTION

Many charged-particle beam experiments and applica-
tions, such as particle accelerators, spallation neutron
sources, high-power microwave sources and high-cnergy
colliders, use high-intensity beams of charged particles. For
such systems, beams of high quality (i.c.. low emittance,
high current, small cnergy spread, and low beam loss) are
required. Exploration of cquilibrium states of charged-
particle beams and their stability properties is critical to the
advancement of basic particle accelerator physics. as well as

the design. construction, commissioning, and operation ol

high-brightness particle beams and accelerator systems.

Of particular concern are emittance growth and beam
losses which are related to the evolution of particle beams in
their nonequilibrium states. To minimize emittance growth
and control beam losses, it is critical to find equilibrium dis-
tributions of high-brightness charged-particle beams in aceel-
crators and beam transport systems.

Several kinetic equilibria have been discovered for peri-
odically focused intense charged-particle beams, for ex-
ample, the Kapchinsky-Vladimirsky (KV) sell-consistent
two-dimensional Vlasov cquilibrium for an intense charged-
particle beam in an alternating-gradicnt quadrupole magnetic
focusing field' and the periodically focused rigid-rotor Vla-
sov equilibrium in a periodic solenoidal magnetic focusing
field.”* Both equilibria use a &function phase-space distri-
bution. which is unphysical. Although there is a well-known
rigid-rotor thermal equilibrium in a uniform magnetic ficld,”
periodically focused thermal beam equilibrium has not been
reported until our present work, which includes both a Ki-
netic treatment presented clsewhere™’ and a warm-fluid
treatment presented in this paper.

In this paper, we present a warm-fluid equilibrium theory
of a new thermal charged-particle beam in a periodic sole-
noidal focusing field. Solving the warm-fluid equations in the
paraxial approximation, the beam density and flow velocity
are obtained. The self-consistent rms beam envelope equa-
tion is derived. The self-consistent Poisson equation, govern-

= . o
“Electronic mail: ksenias@mil.edu

1070-664X/2007/14(10)/103102/6/$23.00

14, 103102-1

ing the beam density and potential distributions. is also de-
rived. For such thermal beam equilibria, temperature effects
are found to play an important role. Due to temperature cf-
fects, the beam density prohle has a smooth edge, which is a
morc realistic representation of the beam density than the
unilorm density prolile in previous theories (see. Tor ex-
ample, Refs. 1, 2, and 8). Finally, we discuss the radial con-
finement of the beam.

The organization of this paper is as follows. In Scc. 1,
the basic assumptions in the present model are presented.
Warm-fluid equilibrium equations arc used to derive expres-
sions for the flow velocity profile and beam density distribu-
tion, a root-mean-squared (rms) becam envelope cquation,
and a self-consistent Poisson equation. In Sec. 111, a numeri-
cal technique for computing the warm-fluid beam equilibria
is discussed. Several examples ol the thermal beam equilib-
rium arc presented. The radial confinement of the beam is
demonstrated. In Sec. IV, the conclusions arc presented.

Il. WARM-FLUID BEAM EQUILIBRIUM

We consider a thin, continuous, axisymmetric (/030
=0), single-species charged-particle beam, propagating with
constant axial velocity V,eé. through an applied periodic so-
lenoidal magnetic focusing field. The applied periodic sole-
noidal focusing field inside the beam can be approximated by

B““(r,.\') = %B" (S)I‘é, + B:(.\')é:, (1)

where s=z is the axial coordinate, r=vaxZ+y> is the radial
distance from the beam axis, prime denotes the derivative
with respect to s. and B.(s)=B8,(s+S) is the axial magnetic
lield, which is periodic along the z-axis with periodicity
length §.

In the paraxial approximation. ry, <<S 1s assumed,
where ryp, is the rms beam envelope. The transverse Kinetic
cnergy of the becam is assumed to be small compared to its
axial kinetic energy, i.c., [V.|>|V |. The Budker paramcter
of the beam is assumed to be small, ic., ¢’Ny/mc’ <y,
where g and m are the particle charge and rest mass. respec-
tively, ¢ is the speed of light in vacno, Ny=27 [ drr(r.s) is
the number of particles per unit axial length, and vy, 1s the

© 2007 American Institute of Physics
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relativistic  mass  factor, which, to lecading order, is
yy=const=(1- ;)2 with B,=V,/c=V,/c.

It is convenient to express the self-clectric and self-
magnetic ficlds, produced by the space charge and axial cur-
rent of the beam, in terms of the scalar and vector potentials,
e, EX(r. 5)==V U 5) and B¥Y(r 5)=V X A*!(r s). In
the paraxial approximation, the self-ficld potentials ¢*' and
A™" are related by the familiar cxpression A*‘f=Af'f‘:
=/3b(/)*e'f(r,.v)é:.i Conscquently. the self-magnetic field is
By e y==y (36" 1 ank,

In the paraxial approximation. the warm-fluid equilib-
rium (d/dr=0) equations are’

.V .
V- ViymVy=nyg| - V' + — X (B + B | - Vp,
e

2
V. (n,V)=0, (3)
V2l (r,s) = = dmgny(r.s). (4)
plr.sy=n,(r,s)kgT  (s), (5)
T;(-")’ﬁrms(‘) = const. (6)

In Egs. (2)-(6), p(r,s) 1s the thermal pressure, T (s) is
the transverse beam temperature which remains constant
across the cross section of the beam. and ry,,(s) is the
root-mean-square (rms) radius of the beam, defined by
rf,rms(.s')=N;l211'f6drr3n,,(r,.s'). Equation (6) states that the
beam motion is adiabatic. Notc that for the axisymmetric
becam in the paraxial approximation, we can approximate
V2= (1/r)(al or)ral dr 10 leading order in the Poisson cqua-
tion (4).

We seek a solution for the equilibrium beam profile of
the form

V.irs)= r—-———rh""'\('\.) Bic, (7)
rhrm.\(s)
Vlr.s) = rQ,(s), (8)

which corresponds to a beam undergoing rotation with the
angular frequency (),(s) to be determined self-consistently
later [see Eq. (20)].

The radial component of the momentum equation (2) can
be rewritten as

7
f— Tn[an(r.5)]
or

_ Yoltt 2 .lrgrm\(s) _ 3y . E ’
= mr{ﬁm oy~ ) [ﬂ,,mm‘_.(.\)]}

q o™ M(r,s)
y,:,kBT (s) ar '

(9)

where use of Eqs. (5). (7), and (8) have been made and
Q(s)=¢B.(s)/mcy, 1s the relativistic cyclotron frequency.
Equation (9) can be integrated to give the density profile

Phys. Plasmas 14, 103102 (2007)

)q,mﬁ',z,cjr2
2kgT  (s)
x { Fhm(s) _ 6) - [0(5) + 09
rbrm;(s) ,312,(‘2
_9¢(ny) )
le;kBTJA (s) .
where f(s) is the peak density at the center of the beam,
which is an arbitrary function of s to be determined later [sce

Eq. (18)]. Using the density profile given in Eq. (10). we
obtain a uscful expression for the rms beam radius. i.c..

ny(r,s) = f(.\')cxp(—

(10)

2 . ) kBT_l (S) qub
rbrms(") =a > 3 = S
ynpBeo  2ympBic
X Poems(5) _ Q/’(“')[Qh(;\‘)f Q)] . 140
rhrm.\(x) B‘b'c-

where we have assumed that the beam density is infinitely
small at r=x,

Since kgl () =(my/2){(v =V r=mylv, -V )
<X2>l'="f’§nn.\(“')/2~ we can express the rms thermal emittance
of the beam as

kBTl ('\.)rérms(‘\.)

&= (By) (v, - V) = 2my, B
ht2h

(12)
where the statistical average of y is defined in the usual
manner by (x)r=N;' [ xfydxdvdp,dp, with f, being the par-
ticle distribution function corresponding to the warm-fluid
beam cquilibrium."’7 Combining Eqgs. (11) und (12) vields the
following rms beam envelope equation

B Qu(5)[Q(s) + Q.(5)] K 4¢3
rbrms(s) - 2 2 rbrms“) 5 T
ﬁbc “rb”“‘(‘\) '.hrm\(".)
(13)

where K =2N,q*/ yympBic® is the sclf-field perveance.
Substituting Eq. (13) into Eq. (10) we obtain the simpli-
fied expression for the equilibrium beam density

2K 482 self .
ny(r,s) = f(s)exp —'—, -+ ‘i _q:,b {ry5) )
486\ 2 '.l:rm.\('\.) YZkBT (‘)

(14)

where the scalar potential for the self-clectric field satisfies
the Poisson equation

1 o] o
=om [ r— &M, .\‘)]
ror| or

2K 4y 5 r,s)
=—4mqf(s)expy - — il = S qi) Ll
4eg 2 rpm(®) YpkgT (s)

(15)

Note that when B.(s)=const, the beam density in Eq. (14)
recovers the well-known thermal rigid-rotor equilibrium in a
uniform magnetic field.*

The density profile in the form of Eq. (14) and the ve-
locity profiles (7) and (8) have to satisty the continuity Eq.
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(3). Substituting Egs. (7), (8), and (14) into Eq. (3), and
integrating over the cross scction of the beam yields

ds| roms  f(8) ds
K d 2 s , selll s
- _7—.[ el it ’.t:rm\('ﬂ T :| S (16)
ey ds 2 ) gN,

Note that Eq. (16) is equivalent to the conservation of the
total number ol particles per unit axial length, i.e.,

iy _

or N, =const. (17
ds

Setting the sum of the first two terms in Eq. (16} to zero
gives

’ (6,

fs) == , (18)

’.F\rm\( 3§ )

where C is a constant of integration.

We solve the Poisson equation (15) to determine the
clectric sell-field potential, with f(s) sausfying Eq. (18),
where the clectrie sell-field potential on axis &*V(r=0,s) is
determined hy setting the sum of the third and fourth terms
in Eq. (16) to zero. A numerical scheme for determining
&M(r=0,s) will be described in Sec. 111, The electric self-
field potential energy on axis ¢@*"(0,s) is very small com-
pared to the beam transverse thermal energy, which will be
demonstrated in Sec. IIL

To gain further insight into the azimuthal motion of the
beam, we make usc of Eqs. (7) and (8) to re-express the
azimuthal component of the momentum equation (2), i.e.,

)11,(r,.\')|:rrbL"(x)ﬂb('-;i + ﬁ,,('?i] |:(lb(s)r1 + %Q(.(s)r2:| =0,
J or os <

rbrma(‘))
(19)
Consistent with Eq. (8). we lind the solution o Eq. (19) as
I a),r2
O,(5) = — = (3 (5) + 522 (20)
2 Forms(8)

where w;, and ry, are constants. In Eq. (20}, the term
& () represents the azimuthal beam rotation relative
to the Larmor frame, which rotates at the frequency
—.(5)/2 relative to the laboratory frame.

Substituting Eq. (20) into Eq. (13), we obtain the follow-

ing alternative form of the rms heam envelope equation:

K
:l rbrm.\(x) . ey

zrhrms(»s )

5
wpol T

24
Oplpy
Frems(8) + |:K:(.\‘) =S doee
rbrm\(")ﬁ;’(
41»:[2b

== o
rhrm:(“)

(21)

where x.(s)=gB.(s)/2y,Bymc” is the focusing parameter.
In the limit £4,=0, Eq. (21) recovers the previous envelope
equation for the cold-fluid beam equilibrium.®

Note that the term proportional to wiriy/ri: (s) in Eq.
t21) plays the role of an effective emittance contrihution to
the envelope equation associated with the average azimuthal

Phys. Plasmas 14, 103102 (2007}

beam rotation relative to the Larmor Irame, and that the rms
beam envelope equation (21) agrees with the well-known
rms envelope equation, ' with the interpretation of the total
emittance

2.4
2 3 Wplpo
£r= 1681b+4,—‘2. (22)
e

M. EXAMPLES OF WARM-FLUID
BEAM EQUILIBRIA

In this section, we present a numerical technique Tor
computing the warm-fluid beam equilibria. We calculate the
beam density by solving the self-consistent Poisson equation
and present several examples of warm-luid beam equilibria.
We show that thermal beam equilibria exist for a wide range
of parameters and discuss the radial confinement of the
beam.

To determine the warm-Huid beam equilibrium numeri-
cally, we obtain the matched rms beam envelope by solving
the rms beam envelope equation (21) with periodic boundary
conditions.” Then, we use the matched rms beam eny clope in
the calculation ol the beam density and potential at any given
s from Egs. (14) and (13).

We calculate the scalar potential for the self-clectric field
using the Poisson equation (15). We rewrite the Poisson
equation (15) as

——|:r—A</)(r,.s')]

47qC [ qd)"’”(r:(),s)]

r;:rms("‘) YZ;kBT_ (s)
r | K 4Hllh GgAP(r.s5)
Xexpl - |- +3 - =
48[b - rbnm(“') ')’[,/\’[;T (‘)

(23)

where Ad(r,s)= & (r,s)- ¢*“M(r=0.5) and use has been
made of Eq. (18). We solve Eq. (23) with the boundary con-
ditions

AAD(r,s)

Ap(0,5)=0 and
o

=0. (24)

r=0

We integrate Eq. (23) from r=0 (0 a few ry,,.. paying special
attention to the singularity at r=0. To avoid the singularity.
we analytically integrate Eq. (23) with boundary conditions
(24) near the z-axis from r=0 to r=Ar (with Ar<<r,.).
treating the beam density as a constant. Then, we approxi-
mate A@(r,s) by the scalar potential of the space-charge-
dominated beam with SK/g4> 1 as

gN, ~
Ad’("--\') E=R zl—br:v for r = \lzrbrm\- ‘25)
rbrms('y)

Using this potential we numerically integrate Eq. (23) out-
wards from r=Ar.

For the purposes of numerical calculations, it is useful to
rewrite Eq. (17) as
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20FTT T T T T T T T [T T T T[T T[T 10T
1.8 =
- 1.6
-
-..g 141 =
1.2} —
1,0 bttt [N N N
0.0 0.2 0.4 06 0.8 1.0
s/S
FIG. 1. Normalized beami  envelope profiles  for  Sy«x.(s)=aq

+a,cos(2ms/S), ap=a,=1.14, w,=0, a warm-fluid (solid curve) beam equi-
lihrium witb K =10, and a cold-fluid (dashed curve) beam equilibrium with

K=x.

A=1 —N;lJ' 2amnurdr
0

self’ =0, 5
=]- chp{— —(I(ba iz ‘)]
YkuT . (5)
x =) I3 2 /! 5
K 4g A(r,s
XJ oxpl - ’2{:+2_*L]_.‘L_‘ﬂ2)_
8 425 | 2  rg(s)] keTL(s)
=0. (26)

In our numerical calculations. an iterative procedure is ap-
plied 1o solve Eq. (26), and A is less than 107*, o

Figure 1 shows the rms cnvelope profiles for Syx.(s)
=dp+a, cos(2ms/S), a  warm-fluid
(solid curve) heam cquilibrium with the “‘scaled” normalized

dp=ad|= 1.14. w,,=0.

perveance K =KS/4e,=10, and a cold-fluid (dashed curve)

beam cquilibrium with K=, The rms beam radius {2 (s)
for the cold-fluid beam equilibrium is determined from Eq.
(21) with the right-hand side equal to zero. In Fig. 1, the
cffects of the finite temperature enlarge the nms beam enve-
lope by 1%.

In Fig. 2 we plot the on-axis clectric self-ficld potential
energy relative to the heam transverse thermal cnergy.
q<"(0,5)/ vikT (5), as a function of s/ for K=0.1. 1, and
10. The rest ol the parameters are the same as in Fig. 1. The
integration constant C is chosen such that &M(0.5/4)=0.
The clectrie self-field potential on axis is indeed small,
which is consistent with the paraxial approximation.

Figure 3 shows the density profiles for the warm-fluid
(solid curve) and cold-fluid (dashed curve) heam equilibria
corresponding to the examples discussed in Fig. 1. The
warm-fluid beam density is nearly uniform up to the beam
cdge where it falls rapidly within a few Debye lengths. Here,
the Debye length is defined as
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FIG. 2. Plot of 1he on-axis electric self-ficld polential energy velative 1o the
beam Iransverse Ibermal energy as a function of s/ for K=0.1, I, and 10,
The other sysiem paramelers are the same as in Fig, I

kT (s
LA i (27)
47g7n,(0,5)

For the warm-fluid beam equilihrium, ry,.=15.4x;,. The
density of the cold [T (s)=0] beam is (sce, lor example,
Ref. 8)

I

Ap

N -

cold b cold ;

my (rs) = g " for r = ¥2r{0i(s). (28)
- brms(s

The effect of the beam temperature on bean density dis-
tribution is illustrated in Fig. 4. As we increase the beam
temperature and keep other system parameters the same, K
decreases, and the density profile makes the transition from a
step-function profile (for 7 =0) to a bell-shape profile, as
shown in Fig. 4.

There is a wide range of parameters for which the warm-
fluid beam equilibrium exists in a periodic focusing channel.
For practical purposes, it is uscful to determine the radial
confinement in an average sense. In Fig. 5, we plot the nor-

L o O D S O R e 2 R ) N
1.0 =
= -
£ 08 =
b L B
k]
S = -
5 06
—_~
Q - -
a
= 04 -
: - =
02 -
On1:1:I11t1||111]|11|||1: L1
o 5 10 15 20 25 30

¥ ’J*D

FIG. 3. Plot of tbe relative beam density vs. r/X,, for a warm-tluid beam
equilibrium (solid curve) and a cold-fluid beam equilibrium (dashed curve)
al s=0 for the same paramelers as in Fig. 1. Here, ry 0= 154x,, for the
warm-fluid beam equilibrium.
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F1G. 4. Plol of 1he relative densily profiles at s=0 al several temperalures:
K=o (cold). 10. 5, und 2. The other system parameters are kepl the same as
n Fig. 1.

malized angular frequency of beam rotation in the Larmor
frame, (S/0,B,c)({(s)+Q.(s)/2), as a function of the ef-
fective self-field parameter (.\'e)ESz(mfz,b(.\'))/’_’)/lz,of,/}:;c2 for
K=0.1. 0.2, 1, and 10. The beam propagates in a periodic
solenoidal focusing field with Syk.(s)=ag+a, cos(2ms/S),
wherc ag=a;=1.14. The beam current is kept the same while
the rms thermal emittance &y, of the beam decreases. Here,
wo(5) = (47g*n,(0,5)/ ym)"* is the plasma frequency, o,
Efgwaz(x)ds is the vacuum phase advance over one axial
period S, the amplitude function wy(s) satisfies the following
cquation (sce, for example, Ref. 11):
1

wy(s) + & ($)wo(s) = ——

e 29
wols) &)

and (f(s))=S""f3f(s)ds denotcs the average of the function
f(s) over onc axial period of the system.
While Fig. 5 is computed for the specific periodic sole-

noidal focusing field with  Sy«k.(s)=ag+a, cos(2ms/S),
1.0 IIIJIIII!II'II!I'IIII
—~ 05 _ : i
S, k=01 k=02 R=1 R=10 1]
o 2 \ \
A B F ! 3
-~ oor . 1 : —
ol [ : ! ]
— ™ . I
& F i
v .05 ¢
b £ ¢
T,
[~ &
_10- U T W A T T N TN TN T UM Y R 1
0.0 0.2 0.4 0.6 0.8 1.0
S"(w;l':]
Yothic

F1G. 5. Plot of the normalized angular frequency of beam rolalion in the
Larmor frame as a function of 1he effective self-ficld parameler for normal-

ized perveances K=0.1.0.2, 1, and 10.
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FIG. 6. Plol of 1he critical effeclive self-ficld parameler (s,) as a lunction of

K= KS/4e,,. The shaded region gives the parameter space lor radial beam
confinement.

where ay=a,=1.14, we observe no change in Fig. 4 if we
vary the values of a and a, provided that the vacuum phase
advance o, of the magnetic field does not change. For a,
=0, Fig. 5 recovers the thermal beam cquilibrium in a uni-
form magnetic focusing field (see Ref. 5).

As shown in Fig. 5, each curve at a particular value of K
has two branches. For any value of the effective self-field
parameter (s,) below a critical value, a contined beam can
rotate at two angular frequencies, either positive or negative
rclative to the Larmor frame. For cach value of f(, the maxi-
mum (critical) value of the effective self-ficld parameter for
a confined bcam is reached when the beam docs not rotate
rclative to the Larmor frame. In Fig. 0, the critical effective
self-field parameter (s,) is plotted as a function of K
=KS/4¢,,. The parameter space for radial beam confinement
is indicated by the shaded region in Fig. 6.

IV. CONCLUSIONS

We presented a warm-fluid equilibrium beam theory of a
new thermal charged-particle becam propagating through a
periodic solenoidal focusing field. We solved the warm-fluid
beam equations in the paraxial approximation. We derived
the rms beam envelope equation and solved it numerically.
We also derived the self-consistent Poisson equation, govern-
ing the becam density and potential distributions. We com-
puted the density profiles numecrically for high-intensity and
low-intensity beams. We investigated the temperature cffects
in such beams. We found that the thermal beam equilibrium
has a density profile with a smooth edge and a uniform tem-
perature profile across the beam cross scction. Finally, we
discussed the radial confinement of the bcam.
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A high-brightness circular charged-particle beam system

T. Bemis,” R. Bhatt,”’ C. Chen, and J. Zhou®
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A method is presented for the design of a high-brightness nonrelativistic circular beam system
including a charged-particle cmitting diode, a diode aperture, a circular beam tunnel, and a focusing
magnetic ficld that matches the beam from the emitter to the beam tunnel. The applied magnetic
field is determined by balancing the forces throughout the gun and transport sections of the becam
system. The mcthod is validated by three-dimensional simulations. © 2007 American Institute of

Physics. [DOL: 10.1063/1.2815938]

High-brightness,  space-charge-dominated  charged-
particle beams arc of great interest because of their applica-
tons in particle accclerators, x-ray sources, vacuum clectron
devices, and material processing such as ion implantation.
When the beam brightness increases, the becam becomes
space-charge dominated. In the space-charge-dominated re-
gime, the beam cquilibrium is characterized by a beam core
with a transversely uniform density distribution and a sharp
edge where the beam density falls rapidly to zcro in a few
Debye lengths. For particle accelerators, high-brightness,
space-charge-dominated  charged-particle  bcams  provide
high beam intensities. For medical accelerators and x-ray
sources, they provide higher and more precise radiation dos-
age. For ion implantaton, they improve deposition unifor-
mity and speed. For vacuum clectron devices, they permit
high-efficiency, low-noisc  operation  with  depressed
collectors.

An essential component of charged-particle becam sys-
tems is the beam generation and acccleration diode, consist-
ing of a charged-particle emitter and a gap across which one
or morc clectrostatic potential differences are maintained.
Conventionally, Picrce-type diodes’ with or without a grid
are employed to produce the Child-Langmuir emission.™
Compression is often used in Picrce-type diodes in order to
gencrate the desired beam radius. Scrapers arc often used
also to chop off the nonuniform beam cdgcs.4 The grid, com-
pression, and scrapers introduce a mismatch into the bcam
systems and degrade beam brightness. An important aspect
of charged-particle beam system design is the transition from
the diode to the beam focusing wnnel. While the rigid-rotor
cquilibrium is well known for a uniform solenoidal focusing
ficld.” a perfect matching of a circular beam from a Pierce-
type diode into the rigid-rotor cquilibrium has not been re-
ported until this letter.

In this lctter, a method is presented for the generation,
acceleration, focusing, and collection of a high-brightness,
spacc-charge-dominated circular charged-particle beam. As
illustrated in a cross scctional view shown in Fig. 1, the
beam system comprises’

(1) a flat circular emitter which emits charged particles,

“'Present address: Beam Power Technology. Inc., 150 Lincoln Sireel, Suite
3C. Boston, MA 02111

"Present address: 18115 Tawnas Way Lane, Cypress, TX 77429.

“lectronic mail: jea_zhou@pste.mitedu
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91, 201504-1

(2) adiode with one electrode at the emitter and at least one
additional electrode which accelerates the charged par-
ticles,

(3) a beam tunnel which is connected electrically 1o at least
one of the additional cleetrodes,

(4) an applied axisymmetric magnetic ficld for charged-
particle beam focusing, and

(5) adepressed collector which collects the charged-particle
beam.

The cmitter consists of a flat, circular disk. A circular
charged-particle beam is emitted from the emitter with a uni-
form density. The current emission is space-charge limited,
obeying the Child-Langmuir law. The electrodes and applied
axisymmetric magnctic field arc designed to preserve the
beam cross section in the accelerating section. The method
for designing the required electrodes and applied axisymmet-
ric magnctic field is described as follows.

As a first step, the beam dynamics is modeled with a
three-dimensional OMNITRAK simulation with no applied
magnetic field. This provides the clectric field database
which is used to compute iteratively the applied magnetic
field required to preserve the cross section of the charged-
particlc beam at the accelerating and transport sections.

As a sccond step, an estimate of the required applied
magnetic field is obtained by balancing all of the radial
forces on the charged particles on a line whose radius corre-
sponds to the root-mean-square (rms) radius of the cmiuter.
The line starts at the cathode disk and continucs through the
anodc aperture.

MAGNET MAGNE T
NRE BENS
MAGNET A MAGNET
X BEAM TUNNEL WA
EMITTER CHARGED-PARTICLE BEAM COLLECTOR

i
ELECTRODE N m E N

i
ELECTRODE

FIG. 1. Cross seclional view of a high-brightness circular charged-particle
beam system.

© 2007 American Institute of Physics
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For a thin charged-particle beam, all forces are propor-
tional to the radial displacement, and an expression for the
required magnetic field can be derived to achieve the radial
force balance at any radius in the beam core. An applied

axisymmetric magnetic field is expressed in terms of the vec-
tor potential in a cylindrical coordinate system as

14 L 9A,
B=¢,——(rAy) -—e,—. 1
& ﬁr(” o —€, = (1)
In the thin-beam approximation,
1 B.(0,2) .
B=8.(0.z)é.- ——zi—)re,. (2)
s pe
Inspection of Egs. (1) and (2) gives
r
Adr.z) = 5B0.2). (3)

The conservation of canonical angular momentum yields the
expression for the azimuthal velocity

wdr,2) = — ~-[B,(0,2) - B(0,0)]r. )
2m

where use has been made of v,(r,0)=0 at the emitter, and ¢
and 1 are the particle charge and rest mass, respectively. The
radial force balance equation is

z'f,( r.z) q

- —wvy(r,2)B.(r.2). (5)
m r m

qE.(r.z o

Substituting Eq. (4) into Eq. (5) yields

A 2L
4EAD) _ 4% ., (6)
m 4m= -
where usc has been made of the approximation B.(r,z)
=8.(0,z) and the boundary condition B.(0,0)=0. Equation
(6) produccs a relationship between E,/r and B.(0,z2).

By iterating the second step described above, better es-
timates of the required magnetic field are obtained. Typically,
results converge after two or three iterations. As an illustra-
tive example. Fig. 2 shows the final results of OMNITRAK
simulations  with a grid with Ayx=Ay=0.05 mm and
Az=0.1 mm for a circular electron becam which is emitted
from an emitter (cathode) with a radius of 1.52 mm, a cur-
rent of 0.11 A, a cathode-to-anode distance of 4.11 mm at
radius r=1.52 mm. The diode voltage is 2300 V. In Fig. 2,
the electrodes at the cathode and the anode are equipotential
surfaces which are analytically computcdu) to yield a Child-

« 28 .
Langmuir flow™ in the absence of the anode aperture. A
circular aperture at the anode is chosen, and it has a radius of
1.8 mm. A larger circular beam tunnel with a radius of
6.0 mm is connected to the anode. The total axial length of
the system is 10 mm.

Figure 3 shows plots of £, vs zat r=1.0 mm and B.(0,z2)
vs 7 from the OMNITRAK simulations after two iterations. The
radial clectric field vanishes at the emitter (i.e., at z=0),
achieves a maximum magnitude at z=4.11 mm, and then ap-
proaches to a constant value well inside the beam tunnel. The
applied axial maguetic field at the emitter vanishes, inereases
to 640 G at the aperture, and then falls to about 160 G well
inside the beam tunnel. In the simulation, Eq. (6) is exactly
satisfied for all the electrons on the rms beam radius, and
approximately satisfied for the electrons not at the rms beam

Appl. Phys. Lell. 91, 201504 (2007)

X (mm)

-80" -
0 z (mm) 10.0

FIG. 2. (Color online) oMNITRAK simulation of the dynamics of an eleciron
beam emitted from a flal circular cathode with a radius of 1.52 mm and a
current of 0.11 A in an optimized magnetic ficld. Here, the cathode-to-anode
distance is 4.1T mm at »=1.52 mn. the circular anode aperture has a radius
of 1.8 mm, and the heam tunnel has a radius of 6.0 mm. The diode vollage
is 2300 V.

radius. The difference in the electric and applied magnetic
forees in Eq. (6) results in less than 2% deviations of the
electron radii from their initial values. Figure 4 shows the
clectron distribution in the phase plane (x,y) at z=8 mm.
The beam distribution maintains transverse uniformity. In-
deed, the normalized fourth moment (r)/(r*)* which is
cqual to 4/3 for a transversely uniform density distribution,
remains 4/3  within %1%. The outer beum radius
remains the same as the emitter radius within 19%-3%.
At z=8 mm, the normalized angular rotation velocity
is w,=(x'y)/{(y?)=—=0.0244 rad/mm, and the unnormalized
rms thermal emittances in  the x- and v-directions
are &M= VO —w,y))=1.96 mmmrad  and £
= (y?X(y" + wyx)?)=1.96, respectively, which correspond (o
a normalized rms thermal emittance of &= y,g," = g e
=0.186 mm mrad. Adding this (numerical) emittance to the
intrinsic normalized rms emittance of 0.33 mm mrad for a
thermionic cathode of radius 1.52 mm predicts a normalized
thermal emittance of £*"*'<0.38 mm mrad for (he actual
clectron beam.

Becuuse the beam is in laminar flow, a depresscd collec-
tor is designed using the same geometry as the charged-
particle emitting diode, where the circular emitting disk is

E: (kVim)

Zz (mm}

FIG. 3. Plots of E, vs z at r=! mim (solid curvc) and B.10.2) vs - (dashed
curve) from The OMNITRAK stmulations afler Two iterations.
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x (mm)

FI1G. 4. Plot of the clectron distribulion at z=8 mm in the phase plane (x,y).

the beam collecting surface, and diode voltage is slightly
lower (i.e.. a fraction of a percent lower) than the diode
voltage but has a negative bias. Such a depressed collector
yields a collection efficiency of ncarly 100%.

To summarize, a high-brightness, space-charge-
dominated circular charged-particle beam system was de-

Appl. Phys. Lett. 91, 201504 (2007)

scribed. The method was presented for the system, including
the beam generation, aceeleration, focusing, and collection
processes. The method was validated by three-dimensional
simulations.
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An adiabatic equilibrium theory is presented for an intense, axisymmetric charged-particle beam
propagating through a periodic solenoidal focusing field. The thermal beam distribution Tunction is
constructed based on the approximate and exact invariants of motion. i.e.. a scaled transverse
Hamiltonian and the angular momentum. The approximation of the scaled transverse Hamiltonian
as an invariant of motion is validated analytically for highly emittancc-dominated beams and highly
space-charge-dominated beams, and numerically tested to be valid for cases in between with
moderate vacuum phase advances (o, <90°). The beam root-mean-square (rms) envelope equation
is derived, and the sclf-consistent nonuniform density profile is determined. Other statistical
properties such as llow velocity, temperature, total emittance and rms thermal emittance, equation
of state, and Debye length arc discussed. Numerical examples are presented, illustrating the ellects
of thc beam perveance, emittance, and rotation on the heam envelope and density distribution. Good
agreement is found hetween theory and a recent high-intensity beam experiment performed at the
University of Maryland Elcctron Ring [S. Bernal, B. Quinn, M. Reiser, and P. G. O’Shea, Phys. Rev.

ST Accel. Beams 5, 064202 (2002)]. © 2008 American Institute of Physics.

{DOT1: 10.1063/1.2837891]

I. INTRODUCTION

A fundamentat understanding of the Kinetic equilibrium
and stability properties of high-intensity electron and ion
beams in periodic focusing fields plays a central role in high
cnergy density physics research, in the design and operation
of particle accelerators, such as storage rings, rf and induc-
tion linacs, and high-encrgy colliders, as well as in the design
and operation of vacuum electron devices, such as klystrons
and traveling-wave tubes with periodic permanent magnet
(PPM) focusing. For such systems, beams ol high quality
(i.e., low emittance, high current. small energy spread, and
fow beam loss) are required. Exploration of equilibrium
states of charged-particlc hcams and their stability propertics
is critical to the advancement ol basic particle accelerator
physics.

Several kinetic equilibria have been discovered for peri-
odically focused intense charged-particle beams. Well-known
cquilibria for periodically focused intense beams include the
Kapchinskij-Vladmirskij (KV) equilibrium'™ in  an
alternating-gradient quadrupole magnetic focusing field and
the periodically focused rigid-rotor Vlasov (:quilibrium4 ina
periodic solenoidal magnetic focusing field. Both beam
cquilibrial_" have a singular (&function) distribution in the
tour-dimensional phase space. Such a &-function distribution
gives a uniform density prolile across the beam in the trans-
verse directions, and a transverse temperature profile that
peaks on axis and decrcases quadratically to zero on the edge
of the heam. Because of the singularity in the distribution
functions. both ecquilibria are not likely to occur in real
physical systems and cannot provide realistic models for the-
oretical and experimental studics and simulations except for
the zero-temperature limit. For example, the KV equilibrium

1070-664X/2008/15(2)/023102/8/323.00
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model cannot be uscd to explain the beamn tails in the radial
distributions  observed in high-intensity
experiments.’

recent becam

In general, beams tend to relax to a thermal cquilibrium
in the transverse plane such that the temperature across the
transverse beam cross section is uniform. A theoretical un-
derstanding of thermal equilibrium and stable transport is
desirable. Kinetic and warm-Huid theories of a thermal equi-
librium in a uniform magnetic focusing field have been stud-
ied in Ref. 3. A formal multiple scale analysis (a third-order
averaging technique) has been applied to obtain an approxi-
mate periodically focused thermal equilibrium in periodic
solenoidal and periodic quadrupole magnetic fields.” Such mn
averaging procedure is expected to be valid for sulficiently
small vacuum phase advances. The concept of adiabatic
breathing of high-intensity charged-particle heam was pro-
posed in Ref. 7. Recently, a warm-ltuid equilibrium theory ol
a periodically focused intense charge-particle beam” has
been developed under the assumption of the adiubatic equa-
tion of state. In this paper, a kinetic thermal equilibrium in a
periodic magnetic focusing lield is developed to provide
more insight into the equilibrium properties of a periodically
focused thermal beam.

We present a kinetic theory describing an adiahatic ther-
mal equilibrium of an intense charged-particle beant propa-
gating through a periodic solenoidal magnetic focusing ficld.
For continuous beams with long pulses. the longitudinal en-
ergy spread is small such that the longitudinal motion can be
treated as “cold” and decoupled from the transverse motion,
which is kept nonrelativistic. The beam pulsates in trunsverse
directions adiabatically like an ideal gas in an adiabatic pro-
cess, in which the invariant is the product of the trunsverse

© 2008 American Institute of Physics
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temperature and an effective beam area. It differs from the
usual thermal equilibrium in which the temperature is kept
constant.”'" In the present work, the Hamiltonian for single-
particle motion 1s analyzed to find the approximate and exact
invariants of motion, i.c., a scaled (ransverse Hamiltonian
(nonlinear space charge included) and the angular momen-
tum, from which the beam equilibrium distribution is con-
structed. The approximation of the scaled transverse Hamil-
tonian as an invariant of motion is validated analytically for
highly emittance-dominated beams and highly space-charge-
dominated beams, and numerically tested to be valid for
cases in between with moderate vacuum phase advances
(0,<90°). The beam envelope and emittances are deter-
mined self-consistently with the beam equilibrium distribu-
tion. Becausc the distribution function has a Maxwell-
Boltzmann form, it solves not only the Vlasov equation but
also the Fokker-Planck equation. It is expected to be stable in
a similar manner as the beam thermal cquilibrium in a
smooth-focusing approximalion.‘)'m

The paper is organized as follows. In Sec. II, the theo-
retical model is introduced. Exact and approximate constants
of motion are found for the single-particle Hamiltonian in the
paraxial approximation, and the equilibrium distribution is
constructed. In Sec. ITI, the surtistical properties of the beam
equilibrium, such as the beam envelope equation, emittances,
and beam temperature, arc discussed. In Sec. 1V, the numeri-
cal cateulations of the beam density and potential are pre-
sented. In Sce. V, the comparison between our theory and a
recent experiment from University of Maryland Electron
Ring (UMER)" is discussed. Finally, the paper is concluded
in Sec. VL.

Il. BEAM EQUILIBRIUM DISTRIBUTION

We consider a continuous. intense charged-particle beam
propagating with constant axial veloeity Bjce. through an
applied periodic solenoidal magnetic focusing field. The pe-
riodie solenotdal magnetic focusing field is deseribed by
1 dB.(s)

chl= B. e, — —
e 5

(xe, +ye), (1)

where s=¢ is the axial coordinate, B,(s)=B.(s+S5) is the axial
magnetic field, and § is the fundamental periodicity length of
the focusing field. The condition S 1y, is assumed, where
T'hems 18 the characteristie radius of the rms beam envelope.

The single-particle Hamiltonian can be written as /f
=[m*c* +(cP-gA)*]">+ g p*". where the canonical momen-
tum P is related to the mechanical momentum p by P=p
+gAle, A=A+ A* js the veetor potential for the total
magnetic field, A" is the vector potential for the self-
magnetic ficld, A*'(x.y.s)=8B.(s)(—ve +xe )/2 is the vector
potential for the applied magnetic field, ¢*!f is the scalar
potential for self-cleetric tield, i and g are particle rest mass
and charge, and ¢ is the speed of light in vacuum.

In the paraxial approximation. we assume ¥/ )/,‘,[3,2,\2 1,
where v= qZN,,/mc2 is the Bndker parameter” of the beam,
Ny=Jnutx, v)dxdv=const is the number of particles per unit
axial length, and y,=(1-8)""% is the relativistic
mass factor. The axial energy is approximately y,mc’

Phys. Plasmas 15, 023102 (2008)

=(m*c*+c*P;)". Because v/ y, ;<< 1, the longitudinal par-
ticle motion can be decoupled from the transverse particle
motion, and the total Hamiltonian for single-particle motion
is approximated by H = y,mc*+H . Here, the longitudinal
Hamiltonian H||=ybmc2 is a constant and the normalized

transverse Hamiltonian H , =H /ybmﬁ,“:c2 15 expressed as
H (x.y.P, P,.s)= %{[ﬁ‘ + vV + [P, - \;;(;)-.\']2}

+ a)ﬁcll" { 2)

where \k.(s)=¢B.(s)/2ymB,c* is a measure of the
strength  of periodic  solenoidal magnetic  field. f’_
=P, /ymBye. $NM=gd™) yzmﬁgt'2=K(b‘“nl2qN,,. and K
=2¢’N,/ yymBc* is the beam perveance. The scalar
and vector potentials for the self-eleetric and self-magnetic
fields satisfy V2 M= —dmgny(x,y. ). VA
=—4mBycqny(x.v,5)e, and A¥M=A*"e =8, ¢*'"e_. The as-
sociated cquations of motion with the Hamiltonian Eq. (2)
are

d*x ——dy dvk.(s) r?(f)“'”
-k (S) T - ——y+ =0, 3
ds” 2l )d.s' ds : ax )
5 ——dx  dvk(s)  ap*H
—S +2vk () —+ ———x+ —=0. 4
ds? Vic(s) ds ds ay )
In order to simplify the t(ransverse Hamiltonian

I:IJ (x,v,P.,P.,s), we perform a two-step canonical transfor-
mation. The first step is to transform from the Cartesian co-
ordinates into the Larmor frame which rotates with one-half
of the cyclotron frequency relative to the laboratory frume.
The second step is a Courant—Snyder type of transformation.
The first transformation uses the second type of the gencrat-
ing function

Fy(x.y: P, F_V,.s') =[x cos @(s) — y sin @(s)]P,

+ |x sin @(s) + y cos ‘p(,x-)Jf’_‘.. (5)

where @(s)=[{\ &,(s)ds. The transformation is

_ dF, .
¥=—"=uxcos @(s) = vsin @(s), (6)
apP,
. (./ﬁ’i .
§=—==xsin @(s) +y cos ¢(s). (7
(7["_v
oF, ~ =
Ph= 07—" =P, cos ¢(s) + P, sin ¢(s), (8)
X '
oFy - =
B.= ?_- =— P, sin @(s) + P, cos ¢(s). 9)
ay ’

The transverse Hamiltoman after the first transformation is
expressed as
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023102-3 Adiabatic thermal equilibrium theory...

I a7
H (L5, P Pus)=H (v ¥, P Ps)+—=

ds

[Pi+ Pl + k()@ + 3]+ $N(T.T9).

1

T2

(10)

Note that (P! ax*+ P 1y PM(x,y, 5) = (#/] I

+ P/ AP G*M(R.5.s). The equation of motion associated with
the transverse Hamiltonian in Eq. (10 is

12"-:' 6'5clf
ﬁ+;\‘:(.¢).\"+ ‘f;_r_ 10, (11)
12-, Gself
T34 lsIF+ = —=0. (12)

The second canonical transformation uses the second
type ol the generating function

R o P B Vedisilis
FyE5:P o Pys) = — [Pa+— "(‘)f]

B wi(s) 2 ds
v | = ldw(s)_
—||. Pyt 1, 13
* wis)| * * 2 ds )] (13)

where wi(s) satisfies the differential equation

d:w(s) K
T+ k()w(s) - —5——
ds” ’ 2rims(s)

(14)

1
wis)=——,
wi(s)
and Fpme(s) 18 the rms beam radius. It will be shown in Sec.
[11 that the Tunction wi(s) is related to the rms beam radius
[see Eq. (29)]. The transformation is

Ak, X
F=—2= (15)
‘71)‘ H'(S)
aF, 7
F=ta (16)
gp. wis)
- aF, 1| = _dw(s)
=== e P o i——— | 17
N w(.\')[ o+l ds ] (17
- F, I (lw(s)J
Pa=t=—h P.+5y——1. 18
: v W(S)|: & 5 ds ( )

Using Eqs. (15)—(18), the transverse Hamiltonian is trans-
formed into

- I I . . P
H (x5.P.Pos)=——[P*+ P+ @+ 7]+ & (E.5.5)
2w-(s) " i
K 9 nl e
+ ——u(s) (T +y). (19)
4";”“\'(3‘

The cquations of motion associated with the Hamiltonian in
Eq. (19) are
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d¥ H_ P,

o — —_ = ,’—" (20)
ds  op w(s)

iv oH P

2. A = _.‘_.’ (2 [)
ds (;ﬁv w=(s)

dpP oH . ¥ oAt K 5

o T AN 1T )
ds X wis) A 2rads)

dP,  H y et K

it T S o . w(5)¥. (23)

TUwNs) oy 2rh (s)

ds Y

In order to construct a beam cquilibrium distribution, we
need 1o find constants of motion ol the system. Two con-
stants of motion can be found using the transverse Hamil-
tonian in Eq. (19). It is readily shown that the angular mo-
mentum Py is a constant of motion, i.e.,

dP,
7 =0. (24)
In deriving Eq. (24), we have used Egs. (20)—(23). and the
axial symmetry property Msclf—ﬁcld potential, i.c.. "
is only a function of 7= v¥*+¥° and s.

We also find that the scaled transverse Hamiltonian for
single-particle motion,

E=w’(s)H (%7 Py P,.5). (25)

1s an approximatc invariant. The transverse Hamiltonian is a
highly oscillating function. We use the periodic function
w?(s) to scale the transverse Hamiltonian and to climinate
the oscillations such that the scaled transverse Hamiltonian is
an approximatc invariant with small residual oscillations. As
will be discussed in Sec. IV, the small residual oscillations
are numerically cstimated to be a few percent. Using Eqgs.
(20)—(23), the derivative of the scaled transverse Hamil-
tonian can be evaluated, using

dE_dlVia o 5Ly deie g
— =y (X+y + P+ P)+w(s)d(rs
ds ds|?2 e & TR e
Kni(s) _,
5 iz
4r;rms(5)
-l Kwi(s) _,
= — ] wi(s) P (Fs) + :‘—(”F- g (26)
s Arims(8)

It is readily shown that dE/ds is approximately zero in
two limiting cases: (a) a highly space-charged-dominated
beam with SK/ey,> 1 and (b) a highly emittance-dominated
bcam with SK/ey,—0. where g, is the thermal beam emit-
tance defined later in Eq. (35). For a highly space-charge-
dominated beam with SK/ g, > |,
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T Kw(s) i -
q :.f,l,;(r,s) = T—F", Tor r < \2ryms @2n

Aripms(s)

and dE/ds=0. For a highly emittance-dominated beam with
SK/ey,—0, @ =0 and dE/ds=0. For cases in which the

cmit
space-charge cftect 1s comparablc to the emittance elfect, we
will demonstrate dE/ds =0 numerically in Scc. IV.
We choose the beam equilibrium distribution in the form
similar to the Maxwell-Boltzmann distribution, i.c.,

fo=Cexp[- BE - w,Py)]. (28)

where C. B, and w,, are constants. C is an intcgration con-
stant, B is rclated to the beam cmittance, and o, is the rota-
tion frequency rclative to the Larmor frame. Note that w,
=0 for Brillouin flow and w, 0 for gencral lows in which
there 1s magnetic flux on the emitter. Since Pgand E are the
constants of motion, the distribution function f;, defined in
Eq. (28) is indeed a Vlasov equilibrium, i.c.. df,/ds=0.

lll. STATISTICAL PROPERTIES

In this scction, we will discuss the statistical propertics
of the thermal equilibrium developed in Sec. 11, including the
rins beam radius, rms emittance and thermal emittance, flow
velocity, beam tcmperature, and beam density profile.

The distribution function deseribed in Eq. (28) has the
lollowing statistical propertics. First, thc rms becam radius
Toems(5) = (243D =N, [J (32 4°) fyd¥dydP AP, can  be
cvaluated to yield

2 2 er 3
—————w(s) = Ly (s (29)
B - w}) 2
wherc we have introduced the concept of the total cmittance
er=447Y1 —m,:,)‘l. Substituting Eq. (29) into Eq. (14), we
arrive at the rms envelope equation,

=
rt\rms(‘s )

o 2
A=Fie . K &
2 T K:(Urbrm.\ o =

ds

. (30)
="brms

e
4rbrm>
Second, the rms beam emittance of the beam equilibrium
described in Eq. (28) is given in the Larmor frame by

Efms = \<\’2><X'2) <\’\’> = gy/4 = const. (31)

Similarly, &5, =&7/4=const. Note that Eq. (30) agrecs with
the well-known rms cnvelope equation in Ref. 10 with the
interpretation of the total emittance in Eq. (29). As a third
statistical property, in dimensional units, the average (mac-
roscopic flow) transverse velocity of the beam equilibrium is
given in the Larmor frame by

J J j,,dP dP,

r () £70)
=DM g re, + [— d
r‘mns(-") 2rmns(“‘)
As the fourth property, the beam cquilibrium described by
Eq. (28) has the transverse temperature profile (in dimen-
sional units)

Vo (r.5) = [n,mw(:

- vils )]ﬁb”cu (32)
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kBTl(s)=[n,,w:'(s)]"m%J(\'A—V_)zfl,dl_"dl—’\.

2 2 2.
(- wpmyfice}
8 rirms (“)

(33)

where kp is the Boltzmann constant. Note from Eq. (33) that
the product Ti(.s)rs,rm\(s) is a conserved quantity (d/ds=0)
as the bcam pulsates transversely; that is, the equation of
statc is

T, (5)rign(5) = const. (34)

Since 271'rf,rms is a measure of the cffective area of the beam,
Eq. (34} is analogous to the equation of statc for a two-
dimensional adiabatic p]asma.12 As the fifth property. the
thermal beam cmittance in the Larmor frame is

kgT (.\‘)rf,rm_\(.s')

g2 = 5= (N w, - V)= . =const.  (35)
- ,<< 5 S

It fo]]ows from Egs. (31) and (35) that l».'%-:l()lish
+]6w,,'r“mS where the term ]6m,,1» e Corresponds o the

contribution from the average azimuthal motion in the Lar-
mor frame to the total cmittance. The rims envelope equation
(30) can also be expressed as

dzrbrms(“) (lb(v)
ds® 32 2
48[,]
r?)rm.\'(s) :

where  Q(8)=wyerByc/ 278 ()= ()72 and Q. (s)
=¢B,(s)/ ymc. Finally, thc beam density profile is

n,,(r,.v):w"z(.s')JJ’f(IF,dF‘.

_4'n'Ct:lzh _ [I\’ 4l-lh :|_;_2_

[ilb(\) +{} (\)]rhrm\(\)

3, Q
’hxlm(",

(36)

= St o oo
rﬁrms(".) 2 rbrms(‘ )
__éselr(’ ) (37)
')/[;I\ET (S)

where the scalar potential for the sell-clectric field is deter-
mined by the Poisson equation

ﬂ( ﬂ(f)self

ror or

) =—dmaqny(r.s). (38)

It is worth noting that in the paraxial approximation, the total
number of particles per unit length is kept constant. i.c., Ny
= [ony(r,s)2mrdr, This requires the on-axis self-clectric po-
tential ¢*'(r=0,s) 1o vary as a function ol the longitudinal
distance, which will bec dctermined numcrically in
Sec. IV.

It is readily shown that the thermal equilibrium distribu-
tion in Eq. (37) recovers the well-known thermal rigid-rotor
equilibrium in a constant magnetic focusing ficld "’
ting d*rp,/ds?=0 in Eq. (36).

It is worth pointing out that because the derivation of the
theory docs not assume specilic magnctic prolile as defined

by sct-
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FIG. I. Plots of the normalized axial magnetic field Syk.(s) (dashed curve)
and beam rms envelope ryq/ v4e,S (solid curve) versus the axial propaga-
tion distance s/ for a periodically focused adiabatic thermal beam equilib-
rium in an applied magnetic field described by the periodic step-function
lattice in Eq. (39). Here, the choice of system paramelers corresponds to
SVrg=2.12. 7=0.4 (5,=80°), SK/4e,=10.0, and w,=0.

in Eq. (1), it is valid not only for the periodie solenoid mag-
netic hield but also for arbitrary varying solenoid magnetic
field. Therefore, our results apply for the periodic focusing
chaunel as well as for the matching section between the
souree and the periodic focusing channel. We will discuss
numerical examples in a periodic focusing channel in Sec.
1V and compare the theoretical results with the UMER” ex-
perimental measurements in a short matching solenoid chan-
nel in See. V.

IV. NUMERICAL CALCULATIONS

In this seetion, we illustrate examples of adiabatie ther-
mal beam equilibria in a periodic solenoidal focusing field
and the temperature and beam rotation effects with numerical
calculations. We also demonstrate numerically that dE/ ds
=0, as promised in Sec. II. A numerical module has been
added to the PFB2D code'” to solve the rms envelope cqua-
tion, (36) which determines the rms beam radius given the
periodie solenoidal magnetic field and beam perveance, and
Eqs. (37) and (38), which determine the beam density and
scalar potential for the self-clectric field.

We consider a thermal beam focused by a periodical
solenoidal foeusing magnetic ficld defined by the ideal peri-
odie step Tunction «.(s)=«.(s+5) with

\.‘\’:o =const, — W2 <s/S< 52,
0, W2 <s/S<1-792,

Vi(s) = (39)
where 7 is the filling factor of the solenoid magnetic field. In
Fig. 1, the profile of the normalized axial magnetic field
Syn.(s) is plotted as a dashed curve, and the normalized rms
beam envelope Fiims = rprms/ V3EgS for the thermal beam is
plotted as a solid curve. The system parameters are
S\'},(0)=2.12, 7=0.4, K=SK/4£4=10, and w,=0. The
vacuum and space-charge-depressed phase advances of the
particle betatron oscillations over one lattice period are
evaluated (o be op=epfids/2rt =78.9° and o
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FIG. 2. Plot of the relative beam density versus r/x,, at s=0 lor the same
beam and focusing lield as in Fig. |. Here. ry =16.1x; and the beam
densities are normahzed to the peak density.

=.¢:ngds/2r§m,5=]O.7°, respectively. Here. rypo 18 the mms
equilibrium beam cnvelope when K=0.

In Fig. 2, the beam density relative to the peak density
n(r,s)/n(0,s) is plotted as a function of the radius relative 1o
the Debye length at s=0 for the same beam as in Fig. I
Here, the Debye  length is  delined as  Ap
= \'vpkyT  (0)/47g%n,(0.0). The density has a flat top near
the center of the beam and drops to zero within a lew Debye
lengths near the edge of the bcam.

In Fig. 3, thermal beam density profiles are plotted lor
K=0.1. 1.0, 3.0, and 10.0 with the focusing field in Eq. (39),
S\‘KZ(O)=2.|2, and no beam rotation in the Larmor Trame
(i.e., w,=0). Here, the beam density is normalized to the
peak density ng of the beam with SK/4d&;,=10. The beam
density becomes a flat profile near the beam axis as the nor-

malized perveance K=S5K/4¢,, increases, i.c., as the beam
current increases or the temperature decreases.

2.0 T MRS
15 ]
£ ~
o
% 1.0 ]
3 0 . Y
¥ 05 )
0.0 — : — .
) 1 2 3

r/\J4€,S

F1G. 3. Plot of the relative beam density versus r/\4e,.S for several beams
with SK/4£,=0.1, 1.0, 3.0. and 10.0, and other system parameters the same
as in Fig. I. Here, the beam densities are normalized to the peak density ol
the beam with SK/4#,,=10.0.
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FIG. 4. Plol of the on-axis self-electric polential relative 1o 1he beam trans-
verse thermal energy as a function of the propagation distance s/§ for sev-
eral beams with SK/4g.,=0.1, 1.0, 3.0, and 10.0, and other system param-
eters the same as in Fig. I

The on-axis self-clectric potential is determined numeri-
cally. requiring the total number of particles per unit length
to be constant. For the detailed numerical method, please
refer to Ref. 8. In Fig. 4, the computed on-axis self-clectric
potential energy relative to the beam transverse thermal en-
ergy, g*"(0.s)/ vikpT (s), is plotted as a function of s/
for SK/4¢,=0.1, 1.0, 3.0, and 10.0, and other system param-
cters the same as in Fig. 1. The variation of the on-axis
self-clectric potential, i.e., the axial electric field, is indeed
small.

To illustrate the influence of the beam rotation rate in the
Larmor frame on the periodically focused thermal beam
cquilibrium, we plot the relative beam density profiles for
three choices of the rotation parameter: =0, 0.9, and 0.99
in Fig. 5. The system parameters are S\,’a()—)=2.l2 and K
=10. As the beam rotation increases, the beam radius in-

1 i L 1

1 2 3 4
r/ 4¢,S

F1G. 5. Plol of the relalive beam densily versus r/v4e,,S for several beams
with SK/4£,=10.0, w,=0, 0.9, and 0.99, and other syslem paramelers the
same as in Fig. 1. Here, the beam densities are normalized 1o 1the peak
density of the beam with w,=0.
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[ r=0.57 s ]
F'=Tyrms
005 N ;:f’bw —
Iy o T, brmg -~
k‘ﬂ - /;" TN "t -
i :

-0.1Q ———"7—= —
%.0 0.2 0.4 0.6 0.8 1.0
s/S

FIG. 6. Plot of the quanlity (S/zﬂ(E))(]E/llf versus 8/S for the four radial
displacements of the beam with system parameters S\x=2.12, =04
(ry=80°), SK/4&4=1.0, and w,=0.

creases, and the peak density at the beam axis decreases.
However, the Debye length is intact as the beam rotation rate
varies.

Finally, we demonstrate the approximate invariant of the
scaled transverse Hamiltonian as detined in Eq. (25) for the
cases SK/ep— 1. Instead of showing dE/ds=0 for cach
single particle, which requires very intensive numerical cal-
culations, we demonstrate, by numerical calculations, that
the scaled transverse Hamiltonian E is slowly varying at a
few radial displacements. In  Fig. 6. the quantty
(S/27(E))dE/ds is plotied as a function of s for various
radial displacements r=0.5ry 00 Formss V2 brmee QDA 27000
with other system parameters g=80°, K=1. and w,=0.
Here, (E)En;'ﬂéfbtli—;xdl_’);-;(72+ST/?.)+w2(s‘)<?)‘“""(7.s)
+[Kw(s)/4r]  (s)]7 is the scaled transverse Hamiltonian
averaged over the particles located at the same radial dis-
placement. Indeed, a maximum value of |(S/27(E)E/ ds|
=0.06, which is achieved at §/5=0.2 and 0.8, assures that

dE/ds=0 in the paraxial approximation.

V. COMPARISON BETWEEN THEORY
AND EXPERIMENT

In this section, we compare the present adiabatic thermal
beam ecquilibrium theory with experimental measurcments.
The system is a 5 keV electron beam focused by a short
solenoid magnetic in one of the experiments of UMER.” In
Refl. 5, the electron beam was generated by a gridded gun
and exited the gun through an anode aperture at s=0. Bell-
shaped bcam density profiles were imaged by a fluorescent
screen while the detailed velocity space distribution was not
accessible. The bell-shaped beam density profile and the
change of the beam density shape as the beam propagates
have not been well understood theoretically using previous
equilibrium theories, such as the KV beam equilibrium.

Using our adiabatic thermal beam cquilibrium theory, we
replicate the beam density profiles at different axial distances
in good agreement with the experimental measurements. Our
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F1G. 7. Plots of calculaled heam radius R = \2ry,,, (solid curves) for three
S keV  electron beams with currents  (emillances): 43 mA  {(4egy,
=71 mm-mrad), 6.5 mA (4g;,,,=30 mm-mrad), and 1.9 mA (deg,,
=20 mm-mrad). The dotted curves are the availahle experimental measure-
ment for two beams: 43 mA (d&iy,, =71 mm-mrad) and 1.9 mA (4eg,,.,
=20 mm-mrad). The on-axis magnetic field is shown as a dashed curve.

equilibrium theory is applicable to this experiment from the
anode aperture to a distance prior to wave breaking initiated
by high-order density distribution fluctuations induced by a
pressure force at the anode aperture. Wave breaking” oecurs
at about one-quarter of plasma wavelength, which is about
30 ¢m in this example. Our cquilibrium theory cannot ex-
plain the density distribution distortion in the present form,
but it will be possible to develop a perturbation theory based
on the equilibrium in the future.

The calculated rms beam radii by solving Eq. (30) are
shown to agree with the available experimental rms beam
radius__mcusurcmcm&j In Fig. 7, the caleulated beam radii
R=1\2ry,. arc plotted as solid curves by solving Eq. (30)
for three 5 keV electron beams with currents (emit-
tances). 43 mA  (4egp, =71 mm-mrad), 6.5 mA (degq,
=30 mm-mrad), and 1.9 mA (4&5m,=20 mm-mrad). The
three beams are focused by a short solenoid magnet whose
on-axis magnetic field is shown as a dashed curve. The cal-
culated beam radii for the two beams with currents 43 and
1.9 mA agree with the previous experiment measurements
(dotted curves) and calculations in Ref. 5. as expected. The
calculated beam radius for the 6.5 mA beam will be used for
the following density caleulalions.

By solving Egs. (37) and (38), we calculate the beam
wransverse density profiles of the UMER 5 keV, 6.5 mA
clectron beam at three axial distances: s=6.4, 11.2, and
17.2 em, as shown by the solid curves in Fig. 8. The dashed
curves are the equivalent KV beam density proﬁles.g‘” Com-
pared with the experimental measurements (dotted curves),”
the calculated beam density profiles are in good agreement.
As the beam radius increases, the beam density profile ap-
proaches the KV (uniform) beam density profile, because the
bcam temperature must decrease in order to  keep
T, (s)rf, () at a constant. In this adiabatic process, the De-
byc length A= y;;kHT (5)/4mg°n,(0.5)=0.54 mm is con-
stant.
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FIG. 8. Normalized 1ransverse beam densily profiles of a S keV, 6.5 mA
(4€¢m=30 mm-mrad) electron beam at three axial distances: s=6.4, 11.2,
and 17.2 cm. The solid curves are from theory, the dotted curves are the
experimental measurements. and the dashed lines are the equivalent KV
beam density disiributions. The densilies are normalized to the equivalent
KV beam density at s=6.4 cm.

VI. CONCLUSION

In conelusion, an adiabatic thermal equilibrium was dis-
covered for an intense, axisymmetric charged-particle beam
propagating through a periodic solenoidal focusing field. The
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thermal beam distribution function was constructed. The
beam rms envelope equation was derived. and the self-
consistent nonunifornm density profile was calculated. Other
statistic properties such as flow velocity, temperature, total
emittance and rms thermal emittance, equation of state, and
Debye Iength were studied. Good agreement was found be-
tween the adiabatic thermal equilibrium theory and recent
high-intensity beam experimental measurements at the Uni-
versity of Maryland Electron Ring.
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A small-signal theory of a nonrelativistic magnetron is developed using a planar model with a thin
electron cloud. The theory includes both inertial effects and electromagnetic eftects in a Floquet
expansion. An analytical dispersion relation of such a planar magnetron is derived. and the growth
rate is calculated analytically. The found instability involves the resonance between the electron
cloud and the magnetron cavity vacuum slow waves. A good agreement is found between the theory
and the self-consistent particle-in-cell MAGIC simulations. © 2008 American Iustitute of Physics.

[DOL: 10.1063/1.2996577]

Crossed-field devices, such as magnetrons and crossed-
field amplifiers (CFA), are of great interest because of their
low cost, high efficiency, compactness, and robustness. They
have many civilian, industrial, and military applications.' ?
Such devices generate high power rf radiation via stimulated
mteractions, as high density electron clouds drift across the
crossed electric and magnetic fields in periodic cavities. On
the qualitative level, the generation and operation of such
high density electron clouds are relatively straightforward
following electrostatics and magnetostatics. The mechanisms
of the rf wave generation, however, have yet to be fully
described due to the complicated processes of the rf interac-
tion.

The onset of the unstable oscillations in magnetrons
has not been analytically described although extensive
particle-in-cell (PIC) simulations can make good pre-
dictions for the instability characteristics.”” Previous studies
included various models utilizing linear theories. Earlier
work focused on the diocotron instability in the guiding-
center approximation,” which ignores inertial effects in the
electron cloud. The recent work by Riyopoulos, using a
guiding-center model, provided insight into the magnetron
instability in the low-space-charge limit.* A linear theory tak-
ing a single rf mode in the Floquet expansion was developed
to include electromagnetic effects.” Despite these theoretical
and PIC simulation efforts, a quantitative agreement between
theory and PIC simulations has not been reported until this
letter.

In this letter. we develop a small-signal (linear) theory
that includes both inertial and electromagnetic effects in a
Floquet expansion. We consider a planar magnetron or CFA
with the geometry as shown in Fig. I. The A-K gap of the
cylindrical magnetron is assumed to be small compared with
the cathode radius. As shown in Fig. 1, the cathode is located
at x=0 and the anode is a slow-wave structure consisting of
a periodic array of vanes and slots. The applied magnetic
field points out of the page, which forces the electron drift
velocity in the y-direction. In a conventional magnetron or
CFA, there is an electron sheath that extends out for some
distance from the cathode. However, such a finite electron
sheath introduces a problem of multiple poles (singularities)
in the theoretical computation of the small-signal gain. To

“Electronic mail: jea_zhou@ psfe.mit.cdu.
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avoid the singularity problem, we approximate the electron
sheath as an infinite thin electron cloud stream, which is
located at x=h. Because of the resonant interaction, our thin
electron cloud stream model captures the basic guin mechu-
nism in the realistic shear flow in a magnetron.

In the small-signal theory, we assume that the system
starts from an equilibrium (dc) state and a small oscillation
(rf) builds up as the electron cloud drifts in the A-K gap. The
general form of any field variable ¢ is

= nlx,v) + Sx.y,0), (1)

where dp(x,y) denotes the equilibrium field variable. Be-
cause the magnetron is periodic in the y-direction with peri-
odicity L. all of the perturbations in Eq. (1) must be of the
Floquet form,

x

Sy = 2 By (x)ehoe), (2)

g=—-%

where k =k +2mq/L. The small-signal theory is valid for
the initial growth stage of the magnetron interaction. Near or
after saturation, a nonlinear theory is needed."’

The corrugation on the anode induces a small static pe-
riodic perturbation on the equilibrium protile of the electron
sheath, as observed in our two-dimensional (2D) MAGIC
simulations. In our simplified model, we approximate the
thin electron sheath by a number of electron cloud streams
with slightly different flow velocities and express the total

equilibrium  charge and current densities us  p(x)=
i Yee————
® [
B(x)=B.e,
S
hl b { N
0 1 | [¢
————
a |L
l
Cathode e-Layer [ Anode

FIG. 1. Schematic of a planar magnetron with a thin electron cloud stream.
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—eS) a;00c=h) and J(x)==eZ}! 0,V 8(x- h)ey, respec-
tively, where M is the number of electron cloud streams, —e
is the electron charge, U,,:Eﬁlcr,,j is the total surface number
density of the electron cloud, and x=/ specifies the trans-
verse displacement of the electron sheath. The equilibrium
flow velocity Vj,; is determined by adding a small velocity
AV,,; from the averaged flow velocity,

= 1|vy, eopf 1 4
e e Lt ®

0 £0

where V,, is the applied A-K gap voltage, By 1s the applied
magnetic ficld strength, &, is the pcrmittivity in vacuum, and
b is the A-K gap width, as shown in Fig. 1. Typically, AV, is
a few percentage of V,, whose value can be estimated from
the 2D MAGIC simulations.

Using the linearized nonrelativistic cold-fluid equations
and the linearized Maxwell equations, the eigenvalue equa-
tion for 6E_‘.kq is derived to be

M )
(72 _(‘_)pjwr(w_ kqvbj')

S OEy + 2 H Mok, 2
a2 OEk, 3—: u( ’) ((u—/s’qvbj)'

* wV,\ é (aF 5
X‘..kq— 3 (_}—(5E‘,‘ + ;‘h;—kq
M 0)2
%y 1- H (. )l + 1]——L—— b 5E,
,-,-2—4 [ ok, ](w—k,,Vb,-)z ¥k,
=0, 4)

where w,.=e¢By/m is the eleciron cyclotron frequency,
w,‘,j(.\‘)=ez(r,,jﬁ(x—lz)/aom is the effective plasma frequency
squared of the jth electron cloud stream, and

P
: 2 b Ploee B
(w—l\q\’h,)’[ o (,zkz] - =V, j=j

H 'V(ll).k )= 5 i/
L E B (w~- kl[V,,!-,)“ B Py

«
2_ 212 pi
W = l\q

and Hl"j',(w,k,l) is the element of the inverse matrix
H"(w,kq). Here, m is the electron mass and c is the speed of
light in vacuum.

The boundary conditions for the electric field (‘)‘E).k‘ are
that the electric field vanishes at the cathode x=0, and the
anode wall x=d and is continuous in the [y-direclion at the
electron cloud layer x=/i; the admittance'" is continuous at
the vane tip x=b and

AOE ASE
yky N 4
ox a=h+0 ax 1=h-0
2 22
e“ay, (o™ —ck))
= e 1L SE,, (v=h). ©6)
=1 Eom o=k V)" e

Equation (6) can be derived by integrating Eq. (4) for x=h
~0 to x=h+0 and making use of lim,_, H;jl,(w,k )
= (5”1/ Vj-'/\'q'

Solving Eq. (4) in the regions O=y=</j, h=<x=), and
h=x=d and maiching the solutions at thc boundaries, we
arrive at the small-signal gain equation or the loaded disper-
sion relation

Appl. Phys. Letl. 93, 151502 (2008)

0.04
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0.01[;
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FIG. 2. Plot of the maximum temporal growth ratc Im(w) as a function of
the surface density o, for a single thin electron cloud stream with the struc-
ture parameters of L=0478 cm, a=0.382cm. b=0478 cm, and o
=4.25 cm in a uniform applied magnetic ficld of B.=180 G and a A-K gap
voltage of V=252 kV.

ah |
0=D(w.k.)=cot 2)-((l— b) |+ el S —
: G 8L, oo gl
sin(k,a/2) 2cos(p,b) + p:kq(w)cos[pq(b -]
ka2 sin(p,b) + r:kq(w)sin[pq(b -]’
(7
where
M 2
ey,
g (@)=, e 2( L )sin(pqlz) (8)
q =1 (w- k Vi)™ \ egm

and pqz\wz/cz—kfl. Setting & =0, Eq. (7) is the vacuum
dispersion relation for the corrulgzued structure. A numerical
code, named crossed-field amplifier system simulator
(CFAsS), 1s developed to solve Eq. (7).

To show the depcndence of the growth rate of an un-
stable mode on the electron density, we plot the maximum
temporal growth rate as a function of the surface density o,
in Fig. 2. The parameters of the structurc are chosen to be
L=0.478 cm, a=0.382 cm, b=0.478 cm, and d=4.25 c¢cm in
a uniform applied magnetic field of B.=180 G and an A-K
gap voliage of V;;=2.52 kV. The electron cloud is assumed
to be an infinitely long sheet with the surface density o),
which propagates at the velocity given by Eq. (3), ie.. the
E X B drift velocity, at the location of 1=0.382 cm. As the
surface density is varied, the phase shift of the unstable mode
is tuned to achieve the maximum temporal growth rate. As
shown in Fig. 2, the maximum growth rate increases as 1he
surface density increases.

To compare our small-signal gain theory with 2D MAGIC
simulations, we restrict our discussion to the low-current re-
gime, where the thin-beam equilibrium model is a good ap-
proximation to the thin electron cloud in the 2D MAGIC sinu-
lations. At high currents, the electron cloud diffuses due to
the strong image effects on the corrugated anode, and an
improved model of electron cloud equilibrium is needed,
which is beyond the scope of this letter.

As an example, we consider the same structure as in Fig.
2. The electron cloud is assumed to be an infinitely long
sheet with 0,=2.12 X 10* cm™

=, which propagates at the av-
eraged velocity V,=0.098¢ at h=0.382 cm. The lowest un-
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FIG. 3. Plot of the amplitude of oscillating voltage as a function of time
as obtained [rom the MaGIC simulation. Here, the parameters are L
=0.478 ¢m, «=0.382 cm, b=0478 e, d=425c¢m, h=0.382c¢m. B.
=180 G, E,=-527 kV/em. o,=2.12% 10* ¢cm™, and V,=0.098c¢.
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stable transverse mode (TM) is calculated to achieve the
maximum growth rate at a phase of 27r/3 and a frequency of
1.979 GHz.

The self-consistent PIC code, 2D MAGIc, is used to
simulate the planar magnetron system. Because 2D MAGIC
can handle only a few vanes, a three-vane slow-wave corru-
gated structure with the same parameters as in Fig. 2 1s used
in the simulation. Periodic boundary conditions are used
such that the 27/3 mode is supported by the three-vane
structure. The uniform crossed electric and magnetic tields
arc applied with B.=180 G and E,=-5.27 kV/cm. The elec-
tron beam is initialized as an infinitely long slab in the z
direction with a width of 0.05 cm in the x direction. The

clectron beam propagates with an initial velocity of A
=0.098¢.

As the beam propagates. the instability starts to build up,
which is illustrated by the voliage crossing the vane tip of
the slow-wave structure. In Fig. 3, the amplitude of the os-
ciltating voltage filtcred by a filter that selects the 27/3
inode 1s plotted. In the early stage of the instability (e.g., for
1<15 ns), the oscillation has a very small amplitude and
exhibits a relatively broad frequcncy spectrum. Starting from
1=10 ns, the 27r/3 mode grows exponentially. It saturates at
tbout =26 ns. For this MAGIC simulation, the 271/ 3 mode is
determined to have a frequency of 1.93 GHz and an ampli-
tude growth rate of 3.12 dB/cm, shown as a circle and a
cross in Fig. 4, respectively.

To compare thc MAGIC simulation results with our
theory. we solve the loaded dispersion relation in Eq. (7) to
calculate the rcal frequeney and the instability growth rate.
Duc to the influence of the anode corrugation, the electron
cloud velocity prior to the linear growth is observed to vary
sinusoidally in the y-direction with a small amplhtude around
the avcraged flow velocity in the MAGIC simulation. To
model the velocity variation, we use three electron cloud
streams at the same location x=0.0384 cm. each with one-
third of the total surface density o,,=0,,=0,3=0%/3 and

slightly different velocities, i.e.. V,,=0.98V,, V,,=V,. and

Appl. Phys. Lett. 93, 151502 (2008)
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FIG. 4. Plot of the temporal growth rate Im{w) (solid curve) and the real
frequency Re(w) (dashed curve) as a function of wave number A, for the
lowest resonant TM mode. The solid and dashed curves are obtained [rom
Eq. (7} using the three clectron cloud streams with surlace densities oy,
=0),=0,3=0,/3=7.07X 107 ¢m™ and flow velocities V,;=0.98V,. V,,
=V,, =0.098¢, and V,,.;=l.02‘_/,,, respectively. The cirele and cross are the
real frequency and instability grow rate from the MAGIC simulation, respec-
tively. Here, the other parameters are the same as those in Fig. 3.

V,;=1.02V,. The theoretical growth rate is in good agree-
ment with the MAGIC simulation, as shown in Fig. 4.

In conclusion, a small-signal theory of a nonrelativistic
magnetron was developed using a planar model with a thin
electron cloud. The theory includes inertial etfects and elec-
tromagnetic effects in a Floquet expansion. The present pla-
nar model is valid provided that the A-K guap is small com-
pared with the cathode radius. The thin electron cloud avoids
the problem of multiple poles (singularities) in the dispersion
relation. An analytical dispersion relation of such a planar
magnetron was derived, and the growth rate was calculated
analytically. 2D MAGIC simulations were performed to verify
the theory. A good agreement was found between the theory
and MAGIC simulations.
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Periodic focusing of a high-space-charge elliptic charged-particle beam
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Abstract
A self-consistent solution is dcveloped for the focusing of coasting, sheet-like, space-
charge-dominated elliptic beams using a hybrid of non-axisymmetric periodic permanent
magnets (PPM) and quadrupole magnets. The beam envelope equations and equilibrium
flow profiles are obtained using a paraxial cold-fluid model. Further, a kinetic theory is
developed to determine the self-consistent beam distribution and its evolution and to
study the temperature effects. Both cold-fluid and kinetic equilibrium theories are
validated by two-dimensional (2D) particle-in-cell (PIC) simulations using thc 2D
Periodically Focused Beam (PFB2D) code, and by three-dimensional (3D) self-consistent
trajectory simulations using OMNITRAK. The theories and PFB2D and OMNITRAK
simulations are applied to design such high-space-charge elliptic beams for applications
in klystrons and vacuum electron devices. Numerical results show that the beam edges in
both transverse directions are well confined without twisting and the elliptic beam density

profile is well preserved. For space-charge-dominated elliptic beams used in ribbon-beam




klystron applications, the temperature effects are studied using both the kinetic

equilibrium theory and PFB2D simulations.

PACS: 29.27.Bd, 52.59.Sa, 47.75.+f, 52.25.Dg
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1. Introduction

There are vigorous activities in the research and development of elliptic-beam sources,
traveling wave amplifiers, klystrons, and accelerator focusing systems. Over 600 high-
power, high-efficiency klystrons, for example, may be needed to provide rf power for the
acceleration cavities of the proposed TeV International Linear Collider (ILC). The
Stanford Linear Accelerator Center (SLAC) has proposed a [0 MW sheet-beam klystron
to meet this need [1]. Other groups, such as Los Alamos National Laboratory (LANL)
and Scientific Applications International Corporation (SAIC), are also interested in shect-
beam technology for microwave amplifier applications [2, 3]. The LANL team has
employed a solenoid/quadrupole magnet combination to transform an incident circular
beam into an emergent elliptic beam [4]. The Massachusetts Institute of Technology
(MIT) has also initiated an elliptic beam project for communications and accelerator
applications {5]. Beam Power Technology, Inc. is developing a ribbon-beam amplifier
based on the elliptic beam technology developed at MIT.

Elliptic beams have attracted broad interests because they have the following
remarkable properties. First, they can transport large amounts of beam currents at reduced
intrinsic space-charge forces and energies. Second, they couple efficiently to rectangular
or elliptic rf structures. The combination of the space-charge reduction and efficient
coupling allows efficient rf generation in vacuum electronic devices, and efticient
acceleration in particle accelerators. Third, elliptic beams provide an additional adjustable
parameter (e.g., the aspect ratio) which may be useful for better matching a beam into a

non-axisymmetric periodic focusing channel.



Transport and focusing of sheet (ribbon) beams has been discussed in the literature for
four decades. Periodic transverse (wiggler) magnetic focusing [6, 7] has been used for
free-electron laser applications, but it can lead to excessive centroid motion for space-
charge-dominated beams [8]. Promising results have been obtained through recent studics
of period-averaged focusing in the periodic cusp magnetic (PCM) field [8, 9] or the
hybrid of PCM and the periodic quadrupole magnet (PQM) field [10, 11] for space-
charge-dominated and emittance-dominated sheet beams, however, significant envelope
oscillations and emittance growth are sometimes seen. They may be rectified by the
present thorough treatment which does not employ period-averaging but self-consistently
inctudes the effects of beam flow profiles and evolving self-fields neglected in the
period-averaging approximation.

Recent efforts in this vein [5, 12] have led to a deeper understanding of high-space-
charge elliptic beam propagation in a non-axisymmetric periodic permanent magnet
(PPM) field. Pure non-axisymmetric PPM focusing, however, is unsuited for sheet-like
elliptic beams with very large aspect-ratio because the twisting of the beam introduces
instabilities, and because the magnetic field nonlinearities in the wide tails of the beam
become appreciable.

In this paper, we develop a self-consistent solution for the focusing of coasting, sheet-
like, space-charge-dominated elliptic beams using the most general formulation of
centroid prescrving linear fields — a hybrid of non-axisymmetric PPM and quadrupole
magnets [13]. A paraxial cold-fluid model is employed to derive generalized envelope
equations that determine the equilibrium flow properties of ellipse-shaped beams with

negligibly small emittance. Furthermore, a kinetic analysis is developed to determine the



beam distribution consistent with the equilibrium flow properties of a uniform ellipse-
shaped beam. In the kinetic model, the emittances are taken into account. A matched
envelope solution is obtained numerically from the generalized envelope equations, and
the results show that the beam edges in both transverse directions are well confined
without twisting. Two dimensional (2D) particle-in-cell (PIC) simulations with our
Periodic Focused Beam 2D (PFB2D) code and 3D Omnitrak simulations show good
agreement with the predictions of equilibrium theory as well as beam stability. For space-
charge-dominated elliptic beams used in ribbon-beam klystron applications, the
temperature effects are studied using both the kinetic equilibrium theory and PFB2D
simulations.

The organization of the present paper is as follows. In Sec. II, the cold-fluid
equilibrium theory is used to derive the generalized envelope equations for a high-space-
charge elliptic beam. In Sec. 111, the kinetic equilibrium theory of a large-aspect-ratio
ellipse-shaped charged-particle beam is presented following Sacherer’s matrix method
[14], and the generalized envelope equations which include the emittances are derived. In

Sec. [V, PIC PFB2D simulations are used to verify the theoretical results and examples of

large-aspect-ratio elliptic beams are discussed. Conclusions are presented in Sec. V.




I1. Cold-fluid equilibrium theory
We consider a high-intensity, space-charge-dominated beam, in which kinetic
(thermal emittance) effects are negligibly small. The beam can be adequately described
by cold-fluid equations. In the paraxial approximation, the steady-statc cold-fluid

equations for time-stationary flow (3/6¢ = 0) in cgs units are [15, 16]
0
ﬁbca_”b'*"vi'(”bvl):()’ (1
s

Vig' =B'Vi4l =—-4mpn,, 2)

1 : R v .
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where s=z, x, =xé _+ye, ,V =08/0x,, g and m are the particle charge and rest

mass, respectively, »n, is the particle density, V, is the transverse flow

velocity, y, = (1 - B} )—12 is the relativistic mass factor, use has been made of
p.=V./c=p, =const, c is the speed of light in vacuum, and the self-electric field
E’and self-magnetic field B* are determined from the scalar potential ¢* and vector
potential AJe.,i.c, E'=-V ¢ and B* =V x4e_.

Wec use the combination of a periodic non-axisymmetric magnetic field and a

quadrupole magnetic field to focus a nearly straight large-aspect-ratio elliptic beam,

whose twist angle is minimized. For the beam dimensions small relative to the
e : e ] > D
characteristic scale of magnetic variations, i.e., (ko,X) /6 <<1 and (ko),y)'/() <=1, the

combined magnetic field can be described to the lowcst order in the transversc

dimensions as




ds

2 k2
Be = 3. (s)e, - 9:0) For vo, + 5% ye, |+ B, (s)ye, +xe, . (4)
where ky =27/S, k§x+k§y=k§ , S is the axial periodicity length, and
' = q g = A q
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We seek solutions to Egs. (1)-(3) of the form

L Lo bf<s)} 2

Vl(x“s):[y )% - )v]ﬂbce |_ v+a lﬂcc-. (6)

In Egs. (5) and (6), x, =X¢, + y¢. is a transverse displacement in the twisted coordinate
system illustrated in Fig. 1; 6(s) is the twist angle of the ellipse; ©(x)=1 if x >0 and
©(x)=0 if x<0: and the functions a(s), b(s), s, (s), u,(s), a.(s), a,(s) and 6(s)
are to be determined self-consistently [see Eqgs. (8)-(12)]. We carry the twist angle 9(.9)

in our calculation for the purpose of generalization, and we will take 8(s)= 0 later to

obtain the solution for a nearly straight elliptic beam.
The self-electric and self-magnetic fields are well known for an elliptical beam with

density distribution specified in Eq. (5) [17], i.e,,

. __2gN, v
op e (2T

Using the expressions in Eqgs. (4)-(7), it can be shown that both the equilibrium

continuity equation (1) and force equation (3) are satisfied if the dynamical variables
als), b(s), u,(s)=a'dalds ,uy(s)sb"db/ds , a.(s), a,(s) and O(s) obey the

generalized beam cnvelope equations (see Appendix A for the derivation)
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Equations (8)-(12) have “time” reversal symmetry under the transformation

(S,a,b,a',b',a}‘_,a_‘ ,9)—) (— s,a,b—a'-b'—a, ,—a},,ﬁ). This implies that the dynamical

system described by Eqs. (8)-(12) has the hyper symmetry plane (a',b’,ax,a‘, )




We look for a solution that has negligible twisting, i.e., &(s)=0. In such a case,

equation (12) leads to

a(s) _ a’(s)

v(s) bz(s)'

Q

R

Correspondingly, the generalized envelope equations (8)-(11) become

2K
+ Kq(s)a(s)—Z K.\s ay(s)a(s)—ax(s)ay(s)a(s)—m =0,

(14)

(15)

(16)

(17)

(18)

The cold-fluid equilibrium provides a set of envelope equations, i.e., Egs. (15)-(18)

which determines the semi-axes of the elliptic beam and the flow velocity profile. The set

of envelope equations is convenient to use for design of an elliptic focusing system.

Normally, for given periodic lattice parameters, we solve Eq. (15)-(18) to obtain thc

matched solution of beam envelopes using periodic boundary conditions, which is a

forward problem. On the other hand, for given beam envelope dimensions, we can solve

Eq. (15)-(18) to dctermine the required lattice parameters, which is an inverse problem.

As will be discussed in Sec. IV, we use the set of envelope equations to design two

periodic lattice systems for two examples of elliptic beams given the beam parameters in

Table 1. However, the cold-fluid theory does not provide detailed information of the




beam distribution and it dose not take the emittance and temperature effects into account,
which might be important in practical devices. The kinetic treatment required to address

the emittance and temperature effects is discussed in Sec. III.




II1. Kinetic Equilibrium Theory

In this section, we develop the kinetic equilibrium of the periodic focused large-aspecct-
ratio elliptic beams when the emittance i1s no longer small and the cold-fluid theory
presented in Sec. 11 is no longer valid. Following Sacherer’s theory [14, 18] that there
exits a self-consistent uniformly charged beam in situations where both external forccs
and self forces acting on the charged particles are linear, we can construct the bcam
distribution and find the self-consistent envelope equations for the applied magnetic field
configuration in Eq. (4). For simplicity, we consider the twist angle 6 =0 in the
following calculations. The results recover the cold-fluid theory in the cold-fluid limit.

We express the transverse single-particle equations of motion in the paraxial

approximation,
dx | dx
=my—==m c—=, 19

B SRR — (19)
and

dp dp v
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where p is the relativistic particle momentum. Here, E = -V¢’ with ¢° given in Eq. (7)

and B =B’ +B“ with B =V x 4’¢. and B® given in Eq. (4).
Since all the terms in Egs. (19) and (20) are linear, we reorganize the equations of

motion (19) and (20) into a matrix format,
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The prime denotes the derivative with respect to s. For 8 = 0, the elements of Fare
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ko, d
‘ kg ds

Fp,p, =2./k‘:isi, (27)

= 3 (28)

prpx =—2,/Kzisi, (29)

2K
g = ——~—+ K, (s). (30)

blsYa(s)+ b(s)]
For a single charged particle, there exists a transfer matrix T(s,s, ) that transforms an

initial location ¥ (SO) into a corresponding location at a later time y(s), i.e.,

x(s)=T(s,50)- %0(s0) (31)
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and note that the elements of T(s, s ) satisfy

C’T(S’So)

= F(s)~T(s,so). (32)
ds

Since we know the equations of motion for individual charged particles, we can
determine the evolution of any distribution of charged particles in phase space following
Sacherer’s theory. In particular, the distribution that is consistent with the lincar self and
focusing forces i1s a hyperellipsoid in the four dimensional phase space that gives a

uniform density profile in the transverse plane (x,y) . The hyperellipsoid can be
described by a symmetric matrix M through the equation
fileoxes)= Al ) M7 6) 26))= 867 6) M) x)-1) 63)
where the superscript “7 ” denotes the transpose operation of a matrix and (5(.\‘) is the
Direc-Delta function. At any position s, the distribution has the elliptical boundary
xr(s)~ M (s) x(s) = 1. Making use of Egs. (31) and (33), we have
M(s)=T(s,50)-M(so)- T" (s.50). (34)
The evolution of the beam distribution is fully characterized by the distribution matrix

M(s), which evolves according to

M)~ (o) M(s) - M(5) 17 (5) 65)

where we have used Egs. (32) and (34).
We relate the ten independent elements of the matrix M(s) to the physical parameters
in Appendix B, yielding

My (s)=a*(s), (36.2)
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Mag(s) = a® (s)pte (s)er, ()= 0% (), (s)er, (s).

M34(5)=b2(5)#y(5),

(36.b)

(36.¢)

(36.d)

(36.¢)

(36.1)

(36.g)

(36.h)

(36.1)

(36.))

where a(s) and b(s) are the semi axes of the ellipse which bounds the beam distribution

in the eonfiguration spaee, &,,,(s) and &,,,,(s) are the rms emittances in the x — and

y — directions, respeetively. Furthermore, u,(s), ,uy(s), a,(s), and a}.(s) are the flow

veloeities as defined in Eq. (6) with =0,

We use the evolution equation of the matrix M(s), e, Eq. (35), to determine the

evolution equations for a(s), b(s), u.(s), ,uy(s), a.(s), ay(s), I e_‘.,.,,,.\.(s).

Substituting Eq. (36) into Eq. (35), the first and third diagonal elements give the

equations for the flow veloeities,

1 daf(s)
'ux(s)—a_(s—) do °

(37)



db(s)

|
;zy(s)—%) o (38)

The third element on the first row of Eq. (35) gives a relation for the rotational flow

velocity, i.e.,

o) o), (39)

We use the second element on the first row and the fourth element on the third row of Eq.

(35) to determine the envelope equations for the beam semi-axes, yielding

d?als) 2K 1662,
_ds2 —+Kq(s)a(s)—2 K \s ay(s)a(s)— a(s)+b(s)_ a3(s) , (40)
d’b(s) 2K 168,

s -—Kq(s)b(s)—2 KA\s ax(s)b(s)— a(s)+b(s) = b3(s) ; 41

where use has been made of Eqs. (37) and (38). Further, the second element of the third
row and the fourth element on the first row of Eq. (35) dctermine the evolution of the

rotational flow velocities a,(s) and ay(s)

dat (s) [a's) , b5)] Bls) o Ko k()
~ +_a(s)+b(s)‘a'r(s)+2 x.(s b(s)+2kg - =0 (42)
day(s) [a(s), ()] —3a) , ko dyx:s)
= +_a(s)+b(s)_av(s)+2 T a(s)+2kg = =3 (43)

Finally, we use the second and fourth diagonal elements of Eq. (35) to determine the
evolution of the rms emittances. After considerable simplification with aid of Eqgs. (39)-

(43), we find that the evolution equations of the rms emittances are two total differential

equations which 1s expressed as, after integration,




Sl 0) = et (sl (5)+ <1, (@)

Ens ()= b (o), () o, 5)

where ¢, and ¢, are integration constants. The constants ¢; and ¢, are related to the rms

thermal emittances which are defined as

i = (N (Vo) Byef ) = “iés)[mi"(';‘)(s)— b (s)ar (s)} —q. @6)

gizh’y E<y2><(y'—Vy/ﬂbc)z>: bz(S)[16£§rms(S)_a2(s i(s)}zcz’ (47)

6| 50)
where V, = B¢l (s)x - a, (s)y] and b= ﬂbc[,uy (s)y+ay (s)xJ are the flow velocities
in the x- and y- directions, respectively, and the average denotes
< Z) = _[ Mpdxdydx'dy' . 1t should be stressed that the thermal emittances are kept constant,
although the rms emittances are not constant and evolve as the beam propagates. In the

cold-fluid limit, Ex =y =0 : g2 = a4(s)ax (s)ay (s)/l() ,

‘xrms

£ = b4(s)ax(5)ay(s)/l6, and Eqgs. (40)-(43) recover the cold-fluid results in Egs.

yrms

(15)-(18) for 8=0.




1V. Examples of intense elliptic beam equilibria

In this section, we present two examples of periodically focused large-aspect-ratio
elliptic beam equilibria in a hybrid magnetic field configuration consisting of a pcriodic
non-axisymmetric magnetic focusing field and a quadrupole magnetic field. One example
is a high-space-charge elliptic beam for a high-efficiency 200 W ribbon-beam amplifier
(RBA) under development at Massachusetts Institute of Technology (MIT) and Beam
Power Technology for wireless communication. The other is a relativistic elliptic beam
which can be used in a 10 MW L-Band ribbon-beam klystron (RBK) for the International
Linear Collider (ILC).

To aid the design of high-space-charge elliptic beam transport, a numerical module in
the PFB2D code [5, 12] has been developed to solve the generalized envelope equations

(40)-(43), which determines the required magnetic field for the desired major-axis a(s)

and minor-axis b(s) of the beam ellipse. Those information are used in 2D self-consistent
PIC PFB2D simulations and 3D OMNITRAK self-consistent particle trajectory
simulations to verify the theory.

As the first example, we consider a space-charge-dominated 6:1 elliptic electron beam
with desired beam semi-axes @ =0.373cm and b =0.062 cm propagating with currcnt

I, = 0.11A along a beam tunnel with a constant axial potential of V, =2290 V. For this
beam, we have f, =0.094 and y, = 1.0045. Based on the discussion in Ref. [19], we can
take the intrinsic thermal emittance to be zero in this case, i.e., &y, = &4, =0. We use

the PFB2D code to solve the set of the generalized envelope equations (15)-(18) [or Egs.
(40)-(43)] to determine the required magnetic fields for focusing such a beam. Thc

parameters of the hybrid periodic permanent magnet focusing fields are found to bc
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B.(s)=-263sin(kys) G , B, =30.0G/cm, §=1912 cm, ko, /Ko, =6 (see Table 1,
Column 2). As seen in Fig. 2, the matched beam semi-axes a(s) and b(s) (solid curves)

solve the generalized envelope equations (15)-(18). The semi-major axis 1s almost a
constant, whereas the semi-minor axis oscillates slightly about a constant value.

Shown in Fig. 2, the dotted curves are the envelopes of the beam ellipse obtained from
the PFB2D self-consistent PIC simulation for the example of a nonrelativistic elliptic

beam with voltage V, =2290 eV , current /, =0.11 A, aspect ratio a/b=6 and

Emx=€m,y =0 in the hybrid magnetic field with B_(s)=-263sin(kys) G

B, =30.0G/cm, §=1.912 cm, and k,, ko, =6. In the simulation, 5x 10° particles are

used. The thermal emittance is negligibly small, and the cold-fluid approximation is valid.
As shown in Fig. 2, there 1s excellent agreement between the theoretical envelope
solution (solid curves) and the self-consistent PIC simulation results (dotted curves). We
measured the angle of the beam ellipse with respect to the laboratory frame. The angle
oscillations have a small amplitude of 0.1 degrees, which are due to fluctuations (noise)
in the simulation.

The PFB2D simulation also shows that the transverse beam distribution preserves the

equilibrium profile as it propagates. In Fig. 3, 5,000 particles (a sample of the
5x 10’ particles in the PFB2D simulation) are plotted in the (x,y) plane and (x,afv/a’s)
plane for five snapshots within one period: s/S =9.0,9.25,9.5,9.75and 10.0 for the same

elliptic beam shown in Fig. 2. The results in Fig. 3 also suggest that the beam equilibrium

1s stable.




As a separate verification of the theories and PFB2D code, a 3D OMNITRAK (13, 19]
simulation is performed for the 6:1 nonrelativistic elliptic beam. Since 3D trajectory
simulations are time-consuming, only a 2-period interval is used for this test, as shown in
Fig. 4. The beam is sent through a conducting cylindrical beam tunnel (not shown) of
radius 10.0 mm. In this simulation, 10,000 macroparticle arrays are used. However, only
a fraction of them (i.e., 64 macropaticle arrays) are shown in Fig. 4(a). Substantially
parallel, non-twisting transport is achieved, and the simulated beam envelopes agree with
the theoretical predictions as shown in Fig. 4(b).

As the second example, we consider a relativistic elliptic beam that can be used in a 10
MW L-Band ribbon-beam klystron (RBK) for the International Linear Collider (ILC).

The beam has a current of /, =111.1A, a voltage of ¥, =120kV and an aspect ratio of
20:1, which corresponds to 3, =0.094 and y, =1.0045. The other beam parameters are
listed in the third column of Table 1. Solving the generalized envelope equations (40)-
(43) with &, . = &4, =0, the hybrid magnetic fields are determined to be the form of
Eq. (4) with B, (s)=-2000sin(ks) G, B, =80.8G/em, S =2.2 cm, and ko, ko, =20.
In Fig. S, the solid curves are the beam semi-axes a(s) and b(s) calculated from the
generalized envelope equations (40)-(43) with &, , = &4, =0, whereas dotted curves

are from the self-consistent PIC PFB2D simulation.
For practical devices, elliptic beams usually have nonzero temperature due to the
heating of sources or other effects. To study the temperature effects, we solve the

generalized envelope equations (40)-(43) with nonzero initial thermal emittances, i.e.,

g,z,u = kBTaz(s = O)/m}/,, ,chz and g,zhyy = kBsz(s = O)/m}/,J ,Bbzcz. As shown in Fig. 6,
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the elliptic beam envelopes are calculated for three different temperature choices: 0 eV,
50 eV and 100 eV. Compared with the cold beam envelopes shown as solid curves in Fig.
6, the warm beam envelopes are found to increase slightly as the beam temperature
increases, while the aspect ratio of the beam decreases from 20:1 to 16.4:1 as the beam
temperature increases from 0 eV to 100 eV.

For the second example of elliptic beams, we assume that the elliptic beam is
generated from an electron gun with an intrinsic temperature of 0.1 eV and a current
density of 1.5 A/cm’ [19]. The elliptic beam has to be compressed by a factor of 471.5 in
area to achicve a current density of 707.3 A/cm® in the focusing channel. During the
compression, the temperature increases by a factor of 471.5 to 47.2 eV. Therefore, in our
calculations, a temperature of 50 eV is a reasonable assumption. As shown in Fig. 7, the
envelopes of the elliptic beam with a temperature of 50 eV are obtained by solving the
envelope equations (40)-(43) (solid curves) and by the PFB2D PIC simulations (dotted
curves). Both results showed a slight increase in the two envelope dimensions and the

aspect ratio of the elliptic beam decreases to 17.8, compared with the cold elliptic beam.
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V. Conclusions

A self-consistent solution for the focusing of coasting, sheet-like, space-charge-
dominated elliptic beams using a hybrid of non-axisymmetric periodic permanent
magnets (PPM) and quadrupole magnets was developed. The beam envelope equation
and equilibrium flow profiles were obtained using a paraxial cold-fluid model. Further, a
kinetic theory was developed to determine the self-consistent beam distribution and its
evolution. Both the cold-fluid and kinetic equilibrium theories were validated by the two-
dimensional (2D) particle-in-cell (PIC) simulations using the 2D Periodically Focused
Beam (PFB2D) code, and the three-dimensional (3D) self-consistent trajectory
simulations using OMNITRAK. The theories and PFB2D and OMNITRAK simulations
were applied to design such high-space-charge elliptic beams for applications in klystrons
and vacuum electron devices. Numerical results showed that the beam edges in both
transverse directions are well confined without twisting and the beam density profile is
well preserved. For space-charge-dominated elliptic beams used in ribbon-beam klystron
applications, the temperature effects are studied using both the kinetic equilibrium theory

and PFB2D simulations.
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Figure Caption

Figure 1 Twisted coordinates.

Figure 2 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the
nonrelativistic elliptic beam in Table 1. The solid curves are the generalized
envelopc solution, whereas the dotted curves are from the PFB2D simulation.

Figure 3 Plots of 5,000 particles (a sample of the 1x10° particles in the PFB2D
simulation) in the (x, y) plane and (x,dy/ds) plane for five snapshots within
one period: s/S =9.0,9.25,9.5,9.75and 10.0 for the same beam shown in Fig.

2

Figure 4 3D OMNITRAK simulation results: (a) image of the simulated beam and (b)
plots of the beam envelopes from the 3D OMNITRAK simulation (dotted
curves) and the theory (solid curves). Here, the parameters of the nonrelativistic

ellipse-shaped beam are listed in Table 1.

Figure 5 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the

relativistic elliptic beam in Table 1 with zero temperature. The solid curves are
the generalized envelope solution, whereas the dotted curves are from the

PFB2D simulation.

Figure 6 Plots of the beam envelopes (a) a(s) and (b) b(s) versus the axial distancc s for

the relativistic elliptic beam in Table 1 for three different temperature choices:

0eV,50eV and 100 cV.
Figure 7 Plots of the beam envelopes a(s) and b(s) versus the axial distance s for the

relativistic elliptic beam in Table 1 for a temeprature of 50 eV. The solid curves
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are the generalized envelope solution, whereas the dotted curves are from the

PFB2D simulation.
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Table 1 System parameters for elliptic-beam examples

Nonrelativistic

Parameter Relativistic
Wireless ILC
Application Communication
Frequency (GHz) 1.95 1.3
RF Power (kW) 0.2 (cw) 10 (pulsed)
Current (A) 0.11 111.1
Voltage (kV) 2.29 120
a/b 6.0 20
a(cm) 0.373 1.0
S (cm) 1912 2
ko, /ko . 6.0 20
B, (kG) 0.263 2.0
B, (G/em) 30.0 80.8
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Appendix A
The derivation of the generalized envelope equations (8)-(12) 1s as follows. Wc first
solve the continuity equation (1). Substituting the density profile in Eq. (5) and the flow

velocity profile in Eq. (6) into Eq (1), we obtain

al b! }-’2 -"}72 al }-'2 b! 572
{“-‘“““-"‘Tﬂ@{"a—z ) b_z}“z[(?“‘x)a—z )R

+(—£6’+56'+2a‘.—3avjx—y§
b a b -

a

(A1)

where the prime denotes 0/3s, and the relations X' = y8', 3'=-X6', de, [Os=¢. 6
and de; /ds = —e 6’ have been used. Since Eq. (A.1) must be satisfied for all ¥ and ¥,

the coefficients of the terms proportional to ®, X°6, y°0 and XyJ must vanish

independently. This leads to the following equations

| da
H, = . (A2)
1 db
by = e (A3)
‘a -b'a
M el (A4)

ds  al-b
Second, we solve the force balance equation (3). Substituting the density profile in Eq.
(5), the flow velocity profile in Eq. (6), and the self-field potential in Eq. (7) into Eq. (3),

we obtain two equations in the X — and y — directions, respectively. In the X —direction,

we have




l(}l —a, 9'+,u —aa, +a 9)‘ =t ,u}H (o W ax,uy).T'J

(A.5)
[ 1 2gn, 2% T
= Ll‘—zL"—— ﬂhBT = (/Uyy I ayX)ﬂsz :
ypm|yy, atb a
In the y - direction, we have
,8,?62 l(a;, — 1,0 + B + @+ a}./l},){; + (,u'v t+a,t -ab + /1'3 - axa).)fj
(A.6)
1 2¢gN, 2y -
i 2 475 2Y ,BhB"' - (:U X = axy)ﬂbB: i
yp|y, atb a
We can rewrite Egs. (A.5) and (A.6) as
fX+g,y=0, (A7)
gxX+/,y=0, (A.8)
where
. 2K q
= —a 0+ 00O, T 0 — -2 s, + ——— B, A9
./.\ Hy y /ur y a(a +b) 5y 7,,,Bbmc2 W ( )
fo=1,+a 6?'—-a,0’+;12,—aa 2.k 1 ia ——Bw,, (A.10)
) ) v X v =T b(a + b) 7 ﬂth Xy
ge=a, — 0"+ 1.0 vo, pu +op, + 2K, —-q—zBﬁ . (A11)
ik P 74Byme
gy =-—ay+u b -pb -apu —au, -2k (s i,u} e (A.12)
}’bﬂb’"C
with the definitions of
2
x. (s ELBz(—S)—, and K =22 (A.13)
2y, Bymc” 7 Byme

We can express the magnetic field in Eq. (4) in the twisted coordinate as
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B= B:(S)C: +(BH;+B}:V~’)7%; +(Bﬁ’f+3ﬁiﬁ7 5 (Al4)

where the magnetic fields contributions are

K2 i,
B = _dB.(s) Aoz" cos” (s )+ L;sinz 6(s)|+2B; sin6(s)cos O(s), (A.14)
' ds | kg ko
By = - dBaj (s) ]‘0" ]cos@ sin 6(s)+ B [0052 6(s)-sin’ 0(s)], (A.15)
: S
dB. (S) ko\ g 2 )
Bz = —? —2— cos8(s sm0 [cos 9(s)—sm 0(.?)], (A.16)
8 ko
o 2
By = —dB:(?) ]‘szsinz O(s)+ 02y cos” 6(s) —2B, sin 8(s)cosb(s). (A.17)
N ds | kg ko

Since Eq. (A.7) and (A.8) must be satisfied for all X and y, the coefficients of the terms

proportional to X and y must vanish independently, which lead to

15 %0, (A.18)
£, =0, (A.19)
8. =0; (A.20)
g =0 (A.21)

Substituting Egs. (A.2)-(A.4) into Egs. (A.18)-(A.21), we obtain




2K qByx

'y r r 2 ’
foo = e =0 0"+ i, =G0ty a0~

a(a+b) - vy Bpymce
2 3 2
' ' aa,-b°a B
:i(a—j+ 3-) +(ax—ay);—2x—axay —L—2 K.\s)a, +q—'“2
ds\ a a a” -b a(a+b) © ypByme
1 d%a bz(cz_f —2axay)+ azai 2K qB
e 5 — -2, K \s)a, + ———
a ds a -b a(a+b) ypBpme
(A.22)
fo=p,+a,0-a 0+l -a.a, - 24K, a -
¥ L ) s b(a+b) 7b,3bmc
2 2 2
! e a‘a,-b'a B+
ds\ b b : a-e=p b(a+b) VpPBpmc”
2 2
a —2a&.a, Hba B~
ldb ( 2) x2_ 2K —2-\/E(;§ax_ q,\y2
T bds? a’-b b(a+b) ¥pPpymc
=0,
(A.23)
7n sl 0; . 0; 2 _ qBﬁ
gy =0y, — 0"+ 1, 0"+ a, i+ aypy, + 24, (s )y, 5
vy Bymce
2 2
&, —ba, Ty -
=a, + (,L =, )—a , 5 +ay(a—+£)+2 ks ,ux—*qB""‘ 5
: 2 p a b ¥y Ppme (A.24)
3
1 d 1 b'la, —a
At el e
a” ds a a“ -b }/bﬂbmc
=@
’ ' ’ qBW
8y =—Q+ 1,0 — 1,0 —a, pt, — a4y, — 2\, (s )y, + =
vpBpme
2
a‘a,-ba a' ’j qB
Y vy
—a. + g, —p - —+— |- 2x. sy, + ———
( ) 2 _p? X( a }/hﬂbmcz . (A.25)
3
a, —o ; B
=_L7i(b2a,x)+lwi(ﬁj_2 )8
b= ds b a*-b° ds\a b 7h,8bmc2
=k
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The generalized envelope equations are

d;‘_ (X 7)‘ )2) Ya— 2K -2 Kz.vay.a-%q—yxza:(h
& &b (a+b) T yByme
2( .2 2.7
d*b a\ai-2a.a,)+b°a 2K By
= 4 ( Y = X }2)) £ — _2 Kz S axb_'&?bzoa
2 a’—b (a+b) Y pPpme

i(azozy)—i3(,ax_—Oty) 2 (£j+2a’a,/1czisi—w—"7a2 =0,

ds a -5 ds\b ¥y Byme?

4 (e )- a3b(a"_—ay)i(ﬁ)+2b'b k. (s —L~’7Zb2 -0,

ds a*—b* ds

do azay -ba,

E_ at—p"

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

Substituting Egs. (A.14)-(A.17) into Eqs. (A.26)-(A.30), we obtain the set of generalized

envelope equations (8)-(12).




Appendix B
In this Appendix, we determine the elements of the matrix M(s). In order to determine
the elements of the matrix M(s), we make the projection of a four-dimensional (4D)

hyperellipsoid to a two dimensional ellipse. Let us first define the 4D hyperellipsoid

through the equation

x" (s)-Lls)-x(s)=1, (B.1)
where L(s)= M_I(s) and
X
x=1"2 (B.2)
X3
X4

We expand Eq. (B.1) as

2 2 2 2
|l = Ll X1 + L22X2 = L33X3 e L44X4 (B 3)
+ 2L|2,\'|X2 e 2L|3XIX3 + 2L|4XIX4 = 2[Q3X2X3 3 2L24x2X4 + 2L34.\'3X4.

To project the 4D hyperellipsoid defined by Eq. (B.3) onto the subspace (.\',,.\‘2..\‘3). we

find the extremal points in these coordinates by differentiating Eq. (B.3) implicitly and

setting dx; = dx, = dx; =0. In this case, we find

1
xq = =——(Ligxy + Lyaxy + Lygx3), (B.4)
L44

which we substitute into Eq. (B.3) to obtain the equation for the 3D ellipsoid that bounds

the projection of the 4D hyperellipsoid defined by Eq. (B.3) onto the subspace (xl ,xz‘x_;),

1.e.,

Ly = (Ln 1Las — %4 )‘12 + (112L44 = 154 )r% + (L33L44 . L§4 )‘32 (B.4)
+ 2(L|2L44 —Ly4Lyy )-xlXZ + 2([431444 —LisLs, )Xl-"3 Gl 2(L23L44 = Lyylsy )sz3-
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The 3D ellipsoid of Eq. (B.4) can be further projected onto the 2D subspace (x,,xz).
We again differentiate Eq. (B.4) implicitly and set dx; = dx, =0 to obtain

£y = (LiaLsa = LisLaa %1 + (LoaLas — LysLag )% (B.5)
2 ’ :
Ly3lyy — L3y

which we substitute into Eq. (B.4) to obtain
2 2
_ Lialsy = 2Li3LyaLag + Ly L3g + Lislag — Ly Laslyy 2
2
L34 = Ly3Lyy

2
+2hialoalss - Liglyslay — L13L§4L34 + Ly L3+ LyzLozLag — LypLssLay -~ (B.6)
L34 — Ly3Lyy

1

2 o
o Loalss = 2LpslogLag + Lopliag +Loslas — LypLyzlag e
5 :

L3g — Lyslyy

Equation (B.6) is the 2D ellipse boundary of the projection of the 4D hyperellipsoid

defined by Eq. (B.1) onto the subspace (x;,x; ).

Expressing the elements L; in terms of the elements M; via the relation

L(s)= L\ (s), we obtain after lengthy manipulation,

M 5 M M
= —2 5 )512—2—12 5= X1%) —_ 5 x%. (B.6)
MMy - M M\ My - My, MMy, - My,
-l,zll
M22

Figure B.1 The boundary ellipse defined in Eq. (B6).
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Note that there are a few useful properties associated with the ellipse defined in Eq. (B.6).

The area bounded by the ellipse is 74 M} My, —M122 . The maximum extents of the

distribution in the x;— and x,— directions are \/M;, and /M,, , respectively, as

shown in Fig. B.1.
Since the projection of the 4D hyperellipsoid distribution onto any 2D subspace
produces a uniform distribution bounded by the ellipse defined in Eq. (B.6), we can relate

the M(s) matrix elements to the statistical averages,

Hxlzdxldxz
<x2> _ cllipsearea
‘ [[ exydx,
cllipse arca
27 1 Mo Man— M 2 M Z 5
[ ] |2 1M2=0 o5 g 212 psing | My My, — My, rdrd6
00 My My,
= o= (B.7)
j j\/M”Mzz'"Mlzzrdl’de
00
= %Mll’
Hx%dxldxz
<Y%> _ cllipsearea
.”‘dxlde
cllipse arza
2zl -
j j(mzerine)z\/M“Mzz —Mlzzrdl’de
=20 (B.8)
[ [y My My, — My rdrde
00
= %Mzz’
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H X) Xodx dx;

<X " >_ ellipse area
e [[ dxyax,

ellipse area

271 2
M”—Mzz——v]\—/lgfrcosﬁ+ My, Sin @ |\ Moy rsin O My Moy — Myy2 rdrd6
2 1122 12
00

M22 VMZZ

T

{

[

[ T ——

1
=—M,,
P -
(B.9)
It follows from Eqs. (B.7)-(B.9) that,
1
<x12><x22>—<x1x2>2 =E(M11M22“M12)- (B.10)

We use the result in Eq. (B.6) to project the 4D hyperellipsoid defined in Eq. (33) onto

the subspace (x,y)z(x,,x3). By the definition of the density profile, such a project

should produce an elliptic boundary defined by

(B.11)

Comparing the coefficients in Eqs. (B.6) and (B.7), we find that M”(s):az(s).

Mi3(s)=0, and M;3(s)=b*(s), which give Egs. (36.a), (36.1), and (36.c), repsectvicly.
We project the 4D hyperellipsoid defined in Eq. (33) onto the subspace
(x,x")= (x;,x,) to yield an elliptic boundary. We find that the usual rms emittance is

related to the area of the ellipse as

Eprms(8) = \/<x2><x'2>—<xx'>2 = %\/Ml 1My — Mlzz ; (B.12)




where ¢, (s) is the rms emittance in the x ~ direction. Using the relation in Eq. (B.9),
the correlation coefficient of x and x' is (xx’>/<x2>= M\, /M, , which allows us to
relate the flow velocity defined in Eq. (6) to the element M, as [see Eq. (36.e)]

Myy(s) = a* (s (s), (B.13)
where use has been made of (xx') =<xVx/,Bbc> = <,uxx2> =%,uxa2. Solving Eq. (B.12)
yields

M22(S)=¢S(§)+a2(s)yz(s), (B.14)

which gives Eq. (36.b).

In a similar manner, we determine the corresponding elements of the matrix M(?) for

the subspace (v, ") = (x3,x,), i.e.,

Miy(s)= bz(s);zy(s), (B.15)
and
2
My (s)= 16‘;’&3‘)(‘?) +b(s)us (s), (B.16)

which give Egs. (36,j) and (36.d), respectively. Here, s, (s) is the flow velocity in the

y — direction, and

Syme(S)= \/ (7)) =) = H M3 Mgy ~ M, (B.17)

is the rms emittance in the y — direction.
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Wc¢ projcct the 4D hyperellipsoid defined in Eq. (33) onto the subspace
(x,_v')=(x|,x4) to yield an elliptic boundary describing the coupling of the particle
motion between the x— and y'— directions. The projection involves the elements

M, (s) . My(s) and My(s) . We use the relation in Eg. (B.9), ie.,

<.\'y'>/<xz> = M,4, My, and the definition of the flow velocity in Eq. (6) to express

M|4(s)=a2(s)ay(s) (B.18)

where «, (s) is the rotational flow velocity in the y — direction. Similarly, we have

Mays(s) = =b(s)a, (s), (B.19)
where o, (s) is the rotational velocity in x — direction. Equations (B.18) and (B.19) give
Egs. (36.g) and (36.h), respectively.

Finally, we project the 4D hyperellipsoid defined in Eq. (33) onto the subspace

(x',y")=(x3,x4) . The correlation of the particle motion between the x'— and

v'—directions is calculated to be

My (s)= <x'y'> — <x'x><xy'> + <x'y><yy'> = az(s)lux (s)ay (s)- bz(s),uy (), (s). (B.20)

@) )

which gives Eq. (36.1).
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1
NON-AXISYMMETRIC
CHARGED-PARTICLE BEAM SYSTEM

PRIORITY INFORMATION

This application claims priority from provisional appli-
cation Ser. No. 60/577.132 filed Jun. 4, 2004, which is
incorporated herein by refercnce in its entirety.

BACKGROUND OF THE INVENTION

The invention relates to the field of charged-particle
systems, and in particular (0 a non-uxisymmetric charged-
partiele systen.

‘The generation. acceleration and transport of a high-
brightness, space-charge-dominated, charged-particle (elec-
tron or ion) beam are the most challenging aspects in the
design and operation of vacuum electron devices and par-
ticle accelerators. A beam is said to be space-charge-domi-
nated if its self-electric and self-magnetic field energy is
greater than its thermal energy. Because the beam brightness
is proportional to the beam current and inversely propor-
tional to the product of the beam cross-sectional area and the
beam temperature, generating and maintaining a beam at a
low temperature is most critical in the design of a high-
brightness beam. If a beam is designed not to reside in an
equilibrium state, a sizable exchange occurs between the
ficld and mean-flow energy and thermal cnergy in the beam.
When the beam is space-charge-dominated, the energy
exchange results in an increasc in the beam temperature (or
degradation in the beam brightness) as it propagates.

If brightness degradation is not wecll contained, it can
cause beam interception by radio-frequency (RF) structures
in vacuum eclectron devices and particle accelerators, pre-
venting them lrom operation, especially from high-duty
operation. 1t can also make the beam from the accelerator
unusable because of the difficulty of focusing the beam to a
small spot size, as olten required in aceelerator applications.

The design of high-brightness, space-charge-dominated,
charged-particle beams relies on equilibrium beam theories
and computer modeling. Equilibrium beam theories provide
the guideline and set certain design goals, whereas computer
modeling provides detailed implementation in the design.

While some equilibrium states are known to exist, match-
ing them between the continuous beam generation section
and the continuous bcam transport section has been a
difficult task for beam designers and users, because none of
the known equilibrium states for continuous beam genera-
tion can be perfectly matched into any of the known equi-
librium states for continuous beam transport.

For example, the equilibrium state from the Pierce diode
in round two dimensional (2D) geometry cannot be matched
into a periodic quadrupole magnetic field to create a
Kapachinskij-Vladimirskij (KV) beam equilibrium. A rect-
angular beam madc by cutting off the ends of the equilibrium
state from the Pierce diode in infinite, 2D slab geometry
ruins the equilibrium state.

However, imperfection of beam matching in the beam
system design yields the growth ol beam temperature and
the degradation of beam brightness as the beam propagates
in an actual device.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is pro-
vided a charged-particle becam system. The charged-particle
beam system includes a non-axisymmetric diode which
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2
forms a non-axisymmetric beam having an eclliptic cross-
section. A focusing channel utilizes a magnetic field for
focusing and transporting a non-axisymmetric beam,.

According to another aspect of the invention, there 1s
provided a non-axisymmetric diode. The non-axisymmetric
diode comprises at least one electrical terminal for emitting
charged-particles and at least one electrical terminal for
establishing an electric field and accelerating charged-par-
ticles to form a charged-particle beam. These terminals urc
arranged such that the charged-particle beam possesses an
elliptic cross-section.

According to another aspect of the invention. there is
provided a method of forming a non-axisymmetric diode
comprising forming at least one electrical terminal for
emitting charged-particles, forming at least one electrical
terminal for establishing an electric field and aceclerating
charged-particles to form a charged-particle beam, and
arranging said terminals such that the charged-particle beum
possesses an elliptic cross-section.

According to another aspect of the invention, there is
provided a charged-particle focusing and transport chunnel
wherein a non-axisymmetric magnetic field is used to loeus
and transport a charged-particle beam of elliptic cross-
section.

According to another aspect ol the invention, there is
provided a method of designing a charged-particle Tocusing
and transport channel wherein a non-axisynunetric magnetic
field is used to focus and transport a charged-purticle beam
of efliptic cross-section.

According to another aspect ol the invention, there is
provided a method of designing an intcrface for matching
charged-particle beam of elliptic-cross section between a
non-axisymmetric diode and a non-axisymmetric magnetic
focusing and transport channel.

According to another aspect of the invention, there is
provided a method of forming a charged-particle bemn
system. The method includes forming a non-axisymmetric
diode that includes a non-axisymmetric beam having an
elliptic cross-section. Also, the method includes forming a
focusing channel that utilizes a magnetic lield for focusing
and transporting the elliptic cross-section beam.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C are schematic diagrams demonstrating a
non-axisymmetric diode;

FIG. 2 is a graph demonstrating the Integration Contour
C for the potential d;

FIG. 3 is a graph demonstrating the cross-section of the
O=0 electrode at various positions along the beum axis;

FIG. 4 is a graph demonstrating the cross-section of the
=V electrode at various positions along the beam axis.;

FIG. 5 is a schematic diagram demonstrating the electrode
geometry of a well-confined, parallel beam ol elliptic cross
section;

FIG. 6 is a schematic diagram ol a non-axisymmetric
periodic magnetic field;

FIG. 7 is a schematic diagram of the field distribution ol
a non-axisymmetric periodic magnetic field;

FIG. 8 1s a schematic diagram demonstrating the labora-
tory and rotating coordinate systems;

FIGS. 9A-9E are graphs demonstrating matched solutions
of the generalized envelope equations for a non-axisymmet-
ric beam system with parameters corresponding to: k,,=3.22
cm™, k,, =539 cm™, vk;=0.805 ¢cm™', K=1.53x107* and
axial periodicity length $=0.956 cm;
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FIGS. 10A-10E are graphs demonstrating the envelopes
and flow velocities for a non-axisymmetric beam system
with the choice of system parametcrs corresponding to:
Ko=3.22 em™, ko, =5.39 em™, vik=0.805 cm™', K=1.53x
1072, axial periodicity length $=0.956 c¢m, and a slight
nusmatch;

FIG. 11 is a graph demonstrating the focusing parameter
for a periodic quadrupole magnetic field,

FIG. 12 is a graph dcmonstrating the beam cnvelopes of
a pulsating elliptic heam equilihrium state in the periodic
quadrupole magnetic ficld shown in FIG. 11;

FIG. 13 is a graph demonstrating the focusing parameter
for a non-axisymmetric periodic permanent magnetic field;
and

FIG. 14 is a graph demonstrating the beam envelopes of
an elliptic beam equilibrium state in the non-axisymmetric
periodie permanent magnetie field shown in FIG. 13.

DETAILED DESCRIPTION OF THE
INVENTION

The invention comprises a non-axisymmetric charged-
particlc beam system having a novel design and method of
design for non-axisymmetric charged-particle diodes.

A non-axisymmetric diode 2 is shown schematically in
F1GS. 1A-1C. FIG. 1A shows the non-axisymmetric diode 2
with a Child-Langmuir electron beam 8 with an elliptic
cross-scction having an anode 4 and cathode 6. FIG. 1B is
a verticul cross-seclional view of the non-axisymmetric
diode 2 and I'1G. 1C is a horizontal cross-sectional view of
the non-axisymmetric diodc 2 showing an electron beam 8
and the cathode 6 and anode 4 electrodes.

The electron beam 8 has an elliptic cross scction and the
charactenistics of Child-Langmuir flow. The particles are
cmitted from the cathode 6, and accelerated by the clectric
field between the cathode 6 and anode 4. For an ion beam,
the roles of cathode and anode are reversed.

To describe the method of dcsigning an non-axisymmetric
diode with an elliptic cross-section, onc can introduce the
elliptic coordinate system (En,7; 1). defined in terms of the
usual Cartesian coordinates hy

x=I cos h (E)cos(n), y=1 sin h{¥)sin(n), z=z (1.1)
where Ze|0, ®) is a radial coordinate, ne|0,2n) is an angular
coordinate, and {'is a constant scaling parameter. A charged-
particle beam flowing in the &, direction and taking the
Child-Langmuir profile of parallel flow with uniform trans-
verse density will possess an internal electrostatic potential
of

NE 7. :)=V(§)”.

where one cun have defined ®(2=0)=0 along o planar
charge-emitting surface and ®(z-d)-V along a planar
charge-accepting surface.

If both planes havc transverse boundaries of elliptic
shapc, specified by the surfacc £=E =constant, then a solu-
tion exists for a parallel flow, uniform transversc density,
Child-Langmuir charged-particlc hcam of elliptic cross-
section, flowing bctwecen the planes at z-0 and z=d. Duc to
the mutual space-charge repulsion of the particles constitut-
ing the heam, this Child-Langmuir profile must be supported
hy the imposition of an external electric ficld through the
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4
construction of appropriately shaped electrodes. The design
of said clectrodes requires knowledge of the electrostatic
potential function external to the beam which satisfies
appropriatc boundary conditions on the beam edge:

a s 1.3
¢(§n.n.2)=V(2) ol
a¢(5 ) 0
—dE 2 =i0}
9 e-g

As the potential and its normal derivative are specilied
independently on the surface £=E;. this forms an elliptic
Cauchy prohlem, for which standard analytic and numerical
solution methods fail duc to the exponential growth of errors
which is characteristic of all elliptic Cauchy problems. The
present lechnique builds on the 2-dimensional technique of
Radley in order to Tormulate a method of solution Tor the Tull
3D problem of determining the elcctrostatic potential out-
side a Child-Langmuir charged-particle beam of elliptic
Cross-section.

In the region external to the beam, the potential satisfies
Laplace’s equation, which is written in elliptic coordinates
as

0 VIEE 1. D) (L%
= — G
FEn.o .
! 2 (o8 &
= 3 ] —t =il
FE n. 2| ficosh 26 —cos 2\ 887~ oy
A F 2}
el CE N
B 1 2 & . 5 .
T ZQTE | fHcosh 26 - cos 2pl Ber T an?
&
Fr Z()TE n)
1 2 & i
= T(E. ) f(cosh 2 —cos '.’1])[5_62 & WF]T(& s
5
&
HEZ(J.

It

where one can follow the usual technique of separation of
variables, writing F(En,2)=Z(z)T(E.,) and introducing the
separation constant k*. The scparated equations can now be
written as

a

0=(22 _ 2z oeay
-(w' ]“-

1 # & (1.6

L r(f.m(a_e*aqz
1 a*lm $ i
= r{)@ (& +Tcos %+

]+sz7(cosh 2€ —cos 2

a

PO b
apag -3

cos 21,

E]
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where one can have performed another separation on the
transverse equatiou, writing T(§,1)-R(E)©(1)) and introduc-
ing the separation constant a. This last equation thus yields

& K2ft (7
0==-—=R(& —[a - S cosh 2§]R(§).
de*
2 KBy (1.8)
0= a,’:(-)(r;) +[n ——3cos 21;]("(:;).

Solutions to the separated transverse equations are known
as the Radial Mathieu Functions R(E) and Angular Mathieu
Functions ©(1), respectively, while the solutions to the
separated longitudinal equation are easily expressed in terms
of exponentials Z(z)xe*<.

The solution for the potential is now rcpresented as a
superposition of separable solutions which, jointly, satisfy
the boundary conditions on ®. One can write

DEN2)- | dkfAk)e | Bla)R, KO, (MK)da) 1.9
where the amplitude functions A(k) and B(a) are introduced
and the integration contours are as yet unspecified. In order
to satisfy the boundary condition on @ along the beam edge,
using the analytic continuation of the Gamma function, one
can write

1 i

43 _

R

(1.10)

j S A,
(o

where the integration contour C is taken around the branch
cut as shown in FIG. 2.
One can then write the boundary condition as

T St (L1
SEo, 0. )= V[g)
h %
=La:-4——l—-—-frk'k "k
(-3) 7]
T

= [ anfawet [ B, ko, b dal,

The boundary condition is satisfied by choosing C as the
integration contour lor the representation of @ and making
the correspondences

. Vg i o (1.1
Ay = —— T
— = | 2sinf —
(-5)2(5)
and
13
fR(a)Ra(go;L)(-)a(r);k\da = 13

The physical system requires a solution periodic in v and
symmetric about 1=0 and n=m/2. In general, the Angular
Mathieu Functions © (1) are not periodic. Indeed, a periodic
solution ariscs only lor certain characteristic eigenvalues of
the scparation constant a. There are 4 infinite and discrete
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6
sets of cigenvalues denoted by a,,,. 4,,,,,. b, ba, g Tor N
€{0, 1, 2, . . . } which difler in their symmetry properties.
Only the set a,, and the corresponding cosine-elliptic solu-
tions denoted by ©(n)=ce,,(n:k) possess the appropriate
symmeltries, and the integral over a becomes a sum ol the
form

B (l.14

1= ) Bk, (603 ke, k).

2
n=0

Moreover, the set of solutions ce,, is orthogonal and
complete over the space of functions with the desired
symmetry and periodicity properties. Thus onc can expand
unity as

o ({10
- j cex (7 k) dn

cex(ip k) 2

1= - —
k5 leezatn: k) dn

n=0

The boundary condition on @ is then satisfied by choosing

x (1.16
fce;,.(r;;k)dr;
By = :(L Nk
) leexnls M)I* dn

and

Rap (60i k) = 1. (1.17

The condition that the normal denivative of the potential
vanishes along the beam surface implies

(.18

32 wan (5K =0,

¢=fo

which, along with the boundary value of R, and the eigen-
value a,,, fully specify the second-order Radial Mathieu
Equation. It can then be integrated by standard methods in
order to determine the radial solutions.

Thus, onc may rewrite the expansion for @ as

Vd A/3

i (1.1%

4 4n
—-—=1{2 sinl —
r( 1] 5 5"‘( 3 ]
2 g
© r cex (i k)dy
dk|k P et Z ez s )Ry, (€3 ) —
»fc = 2 _[‘;"'Icc;,,(r;: K2 dy

n=0

dE 2=

A number of methods may be used to evaluate the charac-
teristic values a,, and the corresponding Angular Mathieu
Functions ce,,,. These can be integrated by standard meth-
ods. In practice, only the first few terms of the infinite series
need be retained in order to reduce fractional errors to below
107°. The integral along the contour C can be transformed
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into delinite integrals ol complex-valued functions along the
real line, and thus it, too. can he evaluated using standard
methods.

Once the potential profile is known, one can employ a
root-linding technique in order to determine surfaces along
which one may place constant-potential electrodes. A
numerical module has becn dcveloped which determines
these electrode shapes based on the theory described and
solution methods described above. Sample electrode designs
are shown in FIGS. 3 and 4 for the case of a 10:1 elliptical
heam of semi-major radius 6 mm and semi-minor radius 0.6
mm. These clectrodes serve to enforce the analytically-
derived potential profile along the beam edge, which in turn
serves to confine the beam and maintain it in the Child-
Langmuir form.

The 3-dimensional charged-particle optics tool Omni-
Trak has been used to simulate the emission and transport of
charge particles in the geometry of FIGS. 3 and 4. The
resulting particle trajectories, shown in FIG. §, are indeed
parallcl, as predicted by the theory. The results of the
Omni-Trak simulation also provide a validation of the
analytical method presented above.

One will olien wish to extract this heam and inject it into
another device by excising a portion of the charge-collecting
plate. Doing so will modify the boundary conditions of the
problem such that the above solution can no longer be
considered exact, however, the errors introduced by rela-
tively small excisions will be negligible, and the appropriate

electrode shapes will be substantially unchanged from those -

produced by the method outlined above.

It should also be noted that additional electrodes, inter-
mediate in potential between the cathode and anode, may be
added in order to aid the enforcement of the Child-Langmuir
How condition. The above prescription allows for their
design. As with the charge-collecting plate, neithcr the
cathode electrode nor the intermediate electrodes need be
extended arbitrarily close to the beam edge in order to
enforce the Child-Langmuir flow condition. The portion of
these electrodes nearest the beam may be excised without
substantially affecting the beam solution.

Along similar lincs, in a physical device, onc cannot
extend the electrodes infinitely far in the transverse direc-
tions. The analytically-prescribed electrodes correspond to
the surtaces of conductors separated hy vacuum and/or other
insulating materials and (in some region distant from the
heam) deviating from the analytically-prescrihed profiles.
Nevertheless, as the influence of distant portions of the
electrodes diminish exponentially with distance from the
bean1 edge, these deviations will have a negligible effect on
the beam profile, provided that they occur at a sufficient
distance from the beam edge.

FIG. 5 depicts an Omni-Trak simulation in which the
finiteness of the electrodes is evident without affecting the
parallel-flow ol the charged particle beam. Note FIG. 5
illustrates the charge collection surface 10, charge emitting
surface 14, parallel particle trajectories 12, and analytically
designed electrodes 16. By equating the electrode geometry
with equipotcntial surfaces, the analytic method of elcctrode
design detailed herein specilies the precise geometry of the
charge-emitting 14 and charge-collecting 10 surfaces as well
as the precise geometry of external conductors 16. These
external conductors may be held at any potential, however,
generally, two external conductors are used—one held at the
cmitter potential and the other at the collector potential. A
charged-particle system designed conformally to this gcom-
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8
etry will generate a high-quality, laminar, parallel-flow.
Child-Langmuir beam of clliptic cross-section as shown in
FIG. 5.

As an illustrated example, a non-axisymmectric periodic
magnetic field for focusing and transporting a non-axisym-
metric beam is shown FIG. 6. FIG. 6 shows the iron pole
pieces 18 and magnets 19 used to form the periodic magnetic
field. The iron polc pieces are optional and may be omitted
in other embodiments. The period of thc magnetic field is
defined by the line 20. The field distribution is illustrated
FIG. 7. Notc FIG. 7 illustrates the field lincs form by the iron
pole pieces 18 and magnets 19 of FIG. 6.

For a high-brightness, space-charge-dominated beam.
kinetic (emittance) effects are negligibly small, and the beam
can be adequately described by cold-fluid cquations. In the
paraxial approximation, the stcady-state cold-Nluid equations
for time-stationary flow (3/9t=0) in cgs units are:

7
ﬂbcg}"b +V. V) =0,

Vg = 'V AL = —angn,, 2

i]v, =

a
V..
""(ﬁ"cas Ve axs

1 v,
ﬂ’_—,vﬂ &+ B2y x B + — x BM(9)8, .
Yoty G B

where s-z, q and m are the particle charge and rest mass.
respectively,

Vi-5

Y=

is the relativistic mass fuctor, use has been made of

B,=B,=const, and the self-electric field E* and self-magnetic

ficld B° are determined Irom the scalar potential ¢° and

vector potential A ‘e, i.e., E°==V ¢° and B*~VxA _ ‘¢..
One secks solutions to Egs. (2.1)-(2.3) of the form

. Ny ali ¥ 7 2.4
mp{xs. 5) = na(s)(s) - at(s) a B |
Vil ) = [ (5)% — au(5)P1Bpce; + Ly (5)F + a ()% Bpcty.  (2.5)

In Eqs. (2.4) and (2.5), x¢=%&,+¥¢; is a transverse displace-
ment in a rotating franie illustrated in F1G. 8; 6(s) is the
angle of rotation of the cllipse with respect to the laboratory
frame; ©(x)=1 if x>0 and ©(x)=0 if x<0; and the functions
a(s), b(s), i(s), n(s), a.(s). a(s) and 6(s) arc to be
determined self-consistently [see Egs. (2.11)-(2.15)].

For the self-electric and self-magnetic lields, Eqs. (2.2)
and (2.4) arc solved to obtain the scalar and vector potentials

(2.6

For a 3D non-axisymmetric periodic magnetic field with
an axial pcriodicity length of S, one can describe it as the
fundamental mode,
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B™(x) =

k k
Bo kﬁsinh(ko..t)cosh(koy YXos(kos)ex + %cosh(ko,x)sinh(koy_v)
0 0

cos(kos)8y — cosh(korx)cosh(koy y)sin(kos)é, |,

and further expand it to the lowest order in the transversc
dimension to obtain

I 2.8

& 5
BEYx) = B %cm(lxoﬂxﬁ. + —:—cos(km)yi, — sintkgs)e,
0 0

k2, cos® B+ k% sin® 6
= Bo[costlxos){m—‘-—uy—i—
o

N

kg, — Kk
L) sin(zo)v]ai +

2‘»4)

kg 42
cus(kos)[— X,, 0'"sin(20).'r+
0

ki, sio® O +4F, cos? @

SJ]Z\. =] sin(ko:)éz].
ko .

In Egs. (2.7) and (2.8),

2 29
k==
s

Ko+ k3, = ki, (2.10)

The 3D magnetic tield is specified by the three parameters
By, S and ko_./koy.

Using the expressions in Egs. (2.5), (2.6) and (2.8), it can
be shown that both the equilibrium continuity and force
equations (2.1) and (2.3) are satisfied if the dynamical
variables a(s), b(s), p(s)=a™'da/ds, p(s)=b~"db/ds, a(s).
a,(s) and 6(s) obey the generalized beam envelope equa-
tions:

: Bl - 20,) +a'd? kL =k @11
= ? +- L = i {) z \/K_ = chos(ko.\')sin(ZH)—
dst &5 ko
; 2K
Zaa,sm(kos) a - T 0,
Iy [d(a? - 200, + bal K - k3 (2.12)
(I—Sf + - — & b'v, L+ Vx, ""A 2 costhos)sin(26) +
« < -be 0
2K
Zs/Za,sin(kos)lb— — =0,
] a+b
Aods ab @, -a,) d (a (2.13)
FC - gl
kj, cos“8 + kg sin“@
2\/;?05(/«'05)% - 2\/Za—sm(lxos)a =!
)
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10
-continued
3 y: \
2 5, - Lo o "’y)i(‘_’]_ 2
ds v ds
sin®0 + k3 cos*0
2\/Zcos(lxo:)k—oy ”s/Zb—sm(kos) =10}
0
48 da,-Fa, g @19
A a-p
247N, (2.16)
A Ll Y ) S ik
e 2y ﬁmez vfime

Equations (2.11)-(2.15) have the time reversal symmetry
under the transformations (s.a,b,a'.b",a,.,.0)—(-s,a.b,-a'.-
b',-a,-a,.0). This implies that the dvnamlcal system
dcscnbcd by Egs. (2.11)-(2.15) has the hyper symmetry
plane (a'b’a,a,).

A numerical module was developed to solve the gener-
alized envelope equations (2.11)-(2.15). There are, in total.
scven functions a(s), b(s), a'(s), b'(s), ., (s). a(s) and 6(s) to
be solved. The time inverse symmectry of the dynamical
system requires the quantities (a',b',c,,x,) vanish at s=0 for
matched solutions, therefore, only the three initial values
a(0), b(0) and 6(0) corresponding to a matched solution need
to be determined by using Newton’s method. The matched
solutions of the generalized envelope equations are shown in
FIGS. 9A-9E for a non-axisymmetric beam system with the
choice of system parameters corresponding to: k, —3.22
em™, Ky, ~5.39 em™, vk=0.805 cm™, K=1.53x107% and
axial periodicity length S=0.956 cm.

In particular, F1G. 9A demonstrates the envelopes asso-
ciated with the functions a(s) and b(s). FIG. 9B is graphical
representation of rotating angle 0(s). F1G. 9C is a graph
illustrating velocity

()_lda
miS = s

FIG. 9D is a graph demonstrating velocity

1db

Hyls) = T

FI1G. 9E is a graph demonstrating vclocities o (s) and «,(s)
versus the axial distance s for a flat, ellipse-shaped, unitorm-
density charged-particle beam in a 3D non-axisymmeltrie
magnetic field.

The matching from the charged-particle diode to the
focusing channel might not be perfect in experiments. 1f a
mismatch is unstable, it might ruin the beam. However.
investigations of small-mismatch becams show that the enve-
lopes are stable against small nismatch.

For example, the envelopes and flow velocities are plotted
in FIGS. 10A-10E for a non-axisymmetric beam system
with the choice of system parameters corresponding to:
ko=3.22 em™', k=539 em™', /K =0.805 cm™', K
1.53 x10"2 and axial pcnodlclty length S=0.956 cm with an
initial 5% mismatch of 6, i.e. 8(s=0)=0,,,,.5..(s=0)x(1.05).

In particular, F1G. 10A demonstrates the envelopes asso-
ciated with the functions a(s) and b(s). FIG. 10B is graphical
representation of rotating angle 6(s). FIG. 10C is a graph
illustrating vclocity




US 7,381,967 B2

11

; 1 da
wls) = ;‘d—.;

FIG. 10D is a graph demonstrating velocity

db

t
Hyls) = i st

F1G. 10E is a graph demonstrating velocities a.(s) and a,(s)
versus the axial distance s for a flat, ellipse-shaped, uniform-
density charged-particle beam in a 3D non-axisymmetric
magnetic field.

By the technique described herein, one can design a
non-axisymmetric magnetic focusing channel which pre-
serves a uniform-density, laminar charged-particle beam of
elliptic cross-section.

One can illustrate how to match an elliptic charged-
particle beam lrom the non-axisymmetric diode, described
herein, into a periodic quadrupole magnetic lield. In the
paraxial approximation, the periodic quadrupole magnetic
field is described by

O] (CLA A IR &N Y
= [a—y]n(ye, +xé,).

The concept of matching, is illustrated in FIGS. 11 and 12.

FIG. 11 shows an example of the magnetic locusing
parametcr

1

s ﬁR’)
8= —_
7 3y Jo

e
Yo Bpmc?

associated with the periodic quadrupole magnetic ficld for a
beam ol charged particles with charge q, rest mass m, and
axial momentum v,f,me.

FIG. 12 shows the cnvelopes for pulsating elliptic bcam
equilibrium in the periodic quadrupole magnetic field, as
described previously.

‘The matching of the equilibrium state from the diode to
the equilibrium state for the periodic quadrupole magnetic
field at s=0 is fcasible, becausc the transverse density profile
and llow velocity of the two equilibrium states are identicul
at s=0. In particular. the transvcrse particle density is uni-
lorm within the beam ellipse and the transverse flow veloe-
ity vanishes at s=0.

Also, one can illustrate how to match an elliptic charged-
particlc beam from thc non-axisymmetric diode, as
described herein, into a non-axisymmetric periodic perma-
nent magnetic field. In the paraxial approximation, the
non-axisymmetric permanent magnetic ficld is described by
Eq. (2.8). The concept of matching is illustrated in F1GS. 13
and 14.

FI1G. 13 shows an example of the magnetic focusing
parameter
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gl (s) 4.1

2ypPpmc?

Vi (s) =

associated with the non-axisymmetric periodic permanent
magpetic ficld (prescnted for a beam of charged particles
with charge q, rest mass m, and axial momentum y,f3,mc.

F1G. 14 shows the envelopes for a flat. clliptic beam
equilibrium state in the non-axisymmetric periodic perma-
nent magnetic field. The angle of the ellipse exhibits slight
oscillations. [lowever, these oscillations can be corrected by
utilizing higher longitudinal harmonics of the magnetic lield
profile.

The matching ol the equilibrium statc Irom the diode to
the equilibrium state for the non-axisymmetric periodic
permanent magnetic field at s=0 is feasible, because the
transverse density profile and flow velocity of the two
equilibrium states are identical. In particular, the transverse
particle density is uniform within the heam ellipse and the
transverse flow velocity vanishes at s—0.

The matching procedure discussed herein illustrates a
high quality interface between a non-axisymmetric diode
and a non-axisymmetric magnetic focusing channel for
charped-particle beam.

‘This beam system will find application in vacuum eclec-
tron devices and particle accelerators where high brightiess,
fow emittance, low temperature beams are desired.

Although the present invention has been shown and
described with respect to several preferred embodiments
thereof, various changes, omissions and additions to the
form and detail thereof, may be made thercin, without
departing from the spint and scope ol the invention.

What is claimed is:

1. A eharged-particle beam system comprising

a non-axisymmctric diode that forms a non-axisymmetric

beam having an elliptic cross-section: and

a focusing channcl that utilizes a magnetic field for

focusing and transporting said clliptic cross-section
bcam.

2. The charged-particle beam system ol claim of 1,
wherein said charged-particle beam possesses a uniform
transversc density.

3. The charged-particle beam system of claim of 1,
wherein said charged-particle beam possesses a laminar
flow.

4. The charged-particle beam system of claim of 1,
wherein said charged-particle beam possesses a parallel
longitudinal flow.

5. The charged-particle beam system of claim 1, wherein
said focusing channel comprises a non-axisymmetric mag-
netic field for focusing and transporting said charged-par-
ticle beam.

6. The charged-particle beam system of claim 5, wherein
said non-axisymmetric magnetic field includes a non-axi-
symmctric periodic magnetic field.

7. The charged-particle beam system of claim 5, wherein
said non-axisymmetric magnetic ficld includes a non-axi-
symmelric permanent magnetic field.

8. The charged-particle beam system ol claim §, wherein
said non-axisymmetric magnetic ficld includes a non-axi-
symmetric periodic permanent magnetic field.

9. The charged-particle beam system of claim of §,
whercin said non-axisymmetric magnetic ficld includes at
lcast onc quadrupole magnctic ficld.
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10. The charged-particle beam system of claim of S.
wherein said non-axisymmetric magnetic ficld includes a
periodic quadrupole magnoetic ficld.

11. The charged-particle beam system of claim 2, wherein
said focusing channel comprises a non-axisymmetric mag-
netic field for focusing and transporting said charged-par-
ticle bcam.

12. The charged-particle beam system of claim 11,
wherein said non-axisymmetric magnetic field includes a
non-axisymmetric periodic magnetic field.

13. The charged-particle beam system of claim 11,
wherein said non-axisymmetric magnetic field includes a
non-axisymmetric permancnt magnetic ficld.

14. The charged-particle beam system of claim 11,
wherein said non-axisymmctric magnetic field includes a
non-axisymmetric periodic permanent magnetic field.

15. The charged-particle becam system of claim of 11,
wherein said non-axisymmetric magnetic field includes at
Icast one quadrupole magnetic ficld.

16. The charged-particle beam systcm of claim of 11,
wherein said non-axisymmetric magnetic ficld includes a
periodic quadrupole magnetic ficld.

17. A method of forniing a charged-particle beam system
comprising

lorming a non-axisymmetric diode that includes a non-

axisymmetric beam having an elliptic cross-section;
and

forming a focusing channel that vtilizes a magnetic field

for focusing and transporting said elliptic cross-section
beam.

18. The method of claim 17, wherein said charged-particle
beam possesses a uniform transverse density.

19. The mcthod of claim 17, wherein said charged-particle
beam possesses a laminar tlow.

20. The method of claim 17, wherein said charged-particle :

bcam posscsses a parallel longitudinal flow.

21. The method of claim 17, wherein said focusing
channel comprises a non-axisymmetric magnetic field for
focusing and transporting said charged-particle beam.
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22. The method of claim 21, wherein said non-axisym-
metric magnetic field includes a non-axisymmetric periodic
magnetic field.

23. The mcethod of claim 21, wherein said non-axisym-
metric magnetic field includes a non-axisymmetric perma-
nent magnetic field.

24. The method of claim 21, wherein said non-axisym-
metric magnetic field includes a non-axisymmetric periodic
permanent magnetic field.

25. The method of claim 21, wherein said non-axisym-
metric magnetic field includes at lcast one quadrupole
magnetic field.

26. The method of claim 21, wherein said non-axisym-
metric magnetic field includes a periodic quadrupole mag-
netic field.

27. The method of claim 18, whercin said focusing
channel comprises a non-axisymmetric magnetic field for
focusing and transporting said charged-particle beam.

28. The charged-particle beam system of claim 27,
wherein said non-axisymmetric magnetic ficld includes a
non-axisymmetric periodic magnetic field.

29. The charged-particle beam system of claim 27,
wherein said non-axisymmetric magnetic field includes a
non-axisymunetric permanent magnetic field.

30. The charged-particle beam system of claim 27,
wherein said non-axisymmetric magnetic ficld includes a
non-axisymmetric periodic permanent magnetic field.

31. The charged-particle beam system of claim of 27.
wherein said non-axisymmetric magnctic ficld includes at
least onc quadrupole magnetic ficld.

32. The charged-particle beam system of claim of 27,
wherein said non-axisymmetric magnetic lield includes a
periodic quadrupole magnetic ficld.




